Tensile prestrains of various levels were applied to blank steel specimens. Four-point bend tests of notched specimens at various temperatures revealed an appreciable drop in the notch toughness of the specimens, which experienced 3 pct tensile prestrain. Further prestrains of up to 20 pct had a negligible effect on the notch toughness despite additional increases in the yield strength. Microscopic analyses combined with finite element method (FEM) calculations revealed that the decrease in toughness resulted from a change of the critical event controlling the cleavage fracture. The increase in yield strength provided by prestraining allowed the normal tensile stress at the notch tip to exceed the local fracture stress s f for propagating a just-nucleated microcrack. As a result, for the coarsegrained steel with low s f tested presently, the critical event was changed from tensile stress-controlled propagation of a nucleated microcrack to plastic strain-controlled nucleation of the microcrack at the notch tip. A reduction of toughness was induced as a result of this. The increase in yield strength provided by decreasing the test temperature acted in the same way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.