Poly(ethylene glycol) diacrylate (PEGDA) of different molecular weights (Mn = 575 and 700) was used as crosslinking agent for the photopolymerization of 2-hydroxyethyl methacrylate (HEMA) in order to obtain HEMA/PEGDA-based hydrogels. Composites were synthesized in situ employing a new methodology that implies the addition of different quantities of silver nitrate aqueous solution to the monomer mixture with the finality to obtain hydrogels with different silver nanoparticles' spatial density and distribution. Samples were characterized by thermal, optical, spectroscopic and structural/morphological methods. Thermal studies showed that the increase of PEGDA molecular weight and the AgNO 3 concentration in the reaction mixture enhance the glass transition temperature and the thermal stability of the composites. This behavior could be related to the silver coordination with the polymer network. Infrared spectroscopy with Fourier transform and Raman analyses were realized in order to corroborate the sample chemical structure by the identification of specific functional groups. Surface hydrogel morphology was visualized with scanning electron microscopy analysis, detecting a homogeneous micro-porous surface for the samples obtained from high molecular weight PEGDA. Presence of silver nanoparticles was established by X-ray fluorescence spectroscopy and UV/Vis methods. In this last case, the characteristic silver nanoparticle plasmon was observed. Using Transmission Electron Microscopy it was possible to visualize a homogeneous spatial distribution of spherical silver nanoparticles with very narrow
In this study, a versatile synthesis of silver nanoparticles of well-defined size by using hydrogels as a template and stabilizer of nanoparticle size is reported. The prepared hydrogels are based on polyvinyl alcohol and maleic acid as crosslinker agents. Three hydrogels with the same nature were synthesized, however, the crosslinking degree was varied. The silver nanoparticles were synthesized into each prepared hydrogel matrix achieving three significant, different-sized nanoparticles that were spherical in shape with a narrow size distribution. It is likely that the polymer network stabilized the nanoparticles. It was determined that the hydrogel network structure can control the size and shape of the nanoparticles. The hydrogel/silver nanohybrids were characterized by swelling degree, Thermal Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscope (TEM). Antibacterial activity against Staphylococcus aureus was evaluated, confirming antimicrobial action of the encapsulated silver nanoparticles into the hydrogels.
Listeria monocytogenes is a recognized foodborne pathogen that causes listeriosis in susceptible consumers. Currently, the detection systems for Listeria in food detect live and dead bacteria, being the viable microorganisms most relevant for their ability to cause sickness in the population at risk. For this reason, a new nanohybrid compound was developed for the optical detection of Listeria that was based on polyamidoamine dendrimers functionalized with an auxotrophic cofactor (lipoic acid), together with the coupling of fluorescent semiconductor crystals (quantum dots). The nanohybrid sensor has a detection limit for viable L. monocytogenes of 5.19 × 10 colony-forming units per milliliter under epifluorescence microscopy. It was specific when used among other pathogens commonly found in food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.