A multi basin analysis of runoff and erosion in the Blue Nile Basin, Ethiopia was conducted to elucidate sources of runoff and sediment. Erosion is arguably the most critical problem in the Blue Nile Basin, as it limits agricultural productivity in Ethiopia, degrades benthos in the Nile, and results in sedimentation of dams in downstream countries. A modified version of the Soil and Water Assessment Tool (SWAT) model was developed to predict runoff and sediment losses from the Ethiopian Blue Nile Basin. The model simulates saturation excess runoff from the landscape using a simple daily water balance coupled to a wetness index in ways that are consistent with observed runoff processes in the basin. The spatial distribution of landscape erosion is thus simulated more correctly. The model was parameterized in a nested design for flow at eight and sediment at two subbasin locations in the basin. Subbasins ranged in size from 4.8 to 174 000 km<sup>2</sup>, and interestingly, the partitioning of runoff and infiltrating flow could be predicted by topographic information. Model predictions showed reasonable accuracy (Nash Sutcliffe Efficiencies ranged from 0.53–0.92) with measured data across all sites except Kessie, where the water budget could not be closed; however, the timing of flow was well captured. Runoff losses increased with rainfall during the monsoonal season and were greatest from shallow soils. Analysis of model results indicate that upland landscape erosion dominated sediment delivery to the main stem of the Blue Nile in the early part of the growing season before the soil was wetted up and plant cover was established. Once plant cover was established in mid August landscape erosion was negligible and sediment export was dominated by channel processes and re-suspension of landscape sediment deposited early in the growing season. These results imply that targeting small areas of the landscape where runoff is produced can be the most effective at controlling erosion and protecting water resources. However, it is not clear what can be done to manage channel erosion, particularly in first order streams in the basin
Abstract:In this study, two different versions of the Soil and Water Assessment Tool (SWAT) are used to simulate the Cannonsville Watershed. These versions are referred to as SWAT_TS and SWAT_VSA. The SWAT-VSA model distributes overland flow in ways that are consistent with variable source area hydrology, while the SWAT_TS model does not. Since many water quality models, such as SWAT, use some form of the curve number equation to predict storm runoff, these models may fail to accurately describe the effects of variable source areas (VSAs), which are mostly important in rural, humid areas, such as upstate New York. These two models are compared by calibrating each for flow, phosphorous and sediment against measured data. Introduction:
Watershed models are essential for evaluating the impact of watershed management; however, they contain many parameters that are not directly measurable. These parameters are commonly estimated by calibration against observed data, often streamflow. Unfortunately, many areas lack long-term streamflow records, making parameter estimation in low data environments (LDE) challenging. A new calibration technique, simultaneous multi-basin calibration (MBC), was developed to estimate model parameters in LDE. Three Soil and Water Assessment Tool (SWAT) model initializations for USGS gages with ~ 2-year records in the Lake Champlain Basin of Vermont, USA, were evaluated by comparing MBC and the commonly used similarity-based regionalization (SBR) approach, where calibrated parameters from a watershed with an extended data record are transferred to the LDE receptor watersheds. In MBC, each watershed is initialized, and observed flows from each initialization are aggregated to generate a combined streamflow record of sufficient length to calibrate using a differential evolution algorithm. New hydrological insights for the region: Using this new MBC method, we demonstrate improved model performance and more realistic model parameter values. This study demonstrates that short periods of hydrological measurement from multiple locations in a basin can represent a system similarly to long term measurements and that even short records taken at multiple locations significantly improve our hydrologic knowledge of a system as compared to relying on the similarity of a basin with a long record of flow. In addition, this study revealed that the hydrologic response is mediated by the interplay of very low soil-saturated hydraulic conductivity (Ksat) and cracking soils. As a result, even if Ksat is very low, cracking clays have a large impact on runoff production Garna et al. (2022). IntroductionWatershed scale hydrological models are often used to quantify and predict diverse and complicated hydrologic system behavior and are often used to manage environmental and water resources. A process based hydrological model consists of equations and parameters that describe watershed processes such as snow accumulation, groundwater flow, runoff generation, and
Watershed models are essential for evaluating the impact of watershed management; however, they contain many parameters that are not directly measurable. These parameters are commonly estimated by calibration against observed data, often streamflow. Unfortunately, many areas lack long-term streamflow records, making parameter estimation in low data environments (LDE) challenging. A new calibration technique, simultaneous multi-basin calibration (MBC), was developed to estimate model parameters in LDE. Three Soil and Water Assessment Tool (SWAT) model initializations for USGS gages with ~ 2-year records in the Lake Champlain Basin of Vermont, USA, were evaluated by comparing MBC and the commonly used similarity-based regionalization (SBR) approach, where calibrated parameters from a watershed with an extended data record are transferred to the LDE receptor watersheds. In MBC, each watershed is initialized, and observed flows from each initialization are aggregated to generate a combined streamflow record of sufficient length to calibrate using a differential evolution algorithm. New hydrological insights for the region: Using this new MBC method, we demonstrate improved model performance and more realistic model parameter values. This study demonstrates that short periods of hydrological measurement from multiple locations in a basin can represent a system similarly to long term measurements and that even short records taken at multiple locations significantly improve our hydrologic knowledge of a system as compared to relying on the similarity of a basin with a long record of flow. In addition, this study revealed that the hydrologic response is mediated by the interplay of very low soil-saturated hydraulic conductivity (Ksat) and cracking soils. As a result, even if Ksat is very low, cracking clays have a large impact on runoff production Garna et al. (2022). IntroductionWatershed scale hydrological models are often used to quantify and predict diverse and complicated hydrologic system behavior and are often used to manage environmental and water resources. A process based hydrological model consists of equations and parameters that describe watershed processes such as snow accumulation, groundwater flow, runoff generation, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.