With emphasis on ''small family '' norms & population control it is necessary to identify malformations so that Interventional programmes can be planned.
The genetic basis of infertility has received increasing recognition in recent years, particularly with the advent of assisted reproductive technology. It is now becoming obvious that genetic etiology for infertility is an important cause of disrupted spermatogenesis. Y-chromosome microdeletions and abnormal karyotype are the two major causes of altered spermatogenesis. To achieve biological fatherhood, intracytoplasmic sperm injection (ICSI) is performed in cases of severe infertility with or without genetic abnormalities. There is a concern that these genetic abnormalities can be transmitted to the male progeny, who may subsequently have a more severe phenotype of infertility. A total of 200 men were recruited for clinical examinations, spermiograms, hormonal profiles, and cytogenetic and Yq microdeletion profiles. Testicular biopsy was also performed whenever possible and histologically evaluated. Genetic abnormalities were seen in 7.1% of cases, of which 4.1% had chromosomal aberrations, namely Klinefelter's mosaic (47XXY) and Robertsonian translocation, and 3.0% had Yq microdeletions, which is very low as compared to other populations. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) were significantly increased in men with nonobstructive azoospermia (NOA) as compared to severe oligoasthenozoospermia (Po0.0001), whereas testosterone levels were significantly decreased in men with microdeletions as compared to men with no microdeletions (Po0.0083). Low levels of androgen in men with microdeletions indicate a need to followup for early andropause. Patients with microdeletions had more severe testicular histology as compared to subjects without deletions. Our studies showed a significant decrease (Po0.002) in the serum inhibin B values in men with NOA, whereas FSH was seen to be significantly higher as compared to men with severe oligoasthenozoospermia (SOAS), indicating that both the Sertoli cells as well the germ cells were significantly compromised in cases of NOA and partially affected in SOAS. Overall inhibin B in combination with serum FSH would thus be a better marker than serum FSH alone for impaired spermatogenesis. In view of the genetic and hormonal abnormalities in the group of infertile men with idiopathic severe oligozoospermia and NOA cases, who are potential candidates for ICSI, genetic testing for Y-chromosome microdeletions, karyotype, and biochemical parameters is advocated.
Isochromosome 18p results in tetrasomy 18p. Most of the i(18p) cases reported so far in the literature are sporadic due to de novo formation, while familial and mosaic cases are infrequent. It is a rare chromosomal abnormality, occurring once in every 140,000 livebirths, affecting males and females equally. In the present investigation, we report a de novo i(18p) in a female dysmorphic child. The small metacentric marker chromosome was confirmed as i(18p) in the proband by cytogenetic and FISH analysis [47,XX+i(18p)]. Cytogenetic investigations in the family members revealed normal chromosome numbers, indicating the case as a de novo event of i(18p) formation. It could be due to the somewhat advanced maternal age (32 years) and/or expression of recessive genes in the proband, who is the progeny of consanguineous marriage, which could have led to misdivision and nondisjunction of chromosome 18 in meiosis I, followed by failure in the chromatid separation of 18p in meiosis II and by inverted duplication.
Chromosomal abnormalities are an important cause of mental retardation. We studied the frequency of karyotype abnormalities in 74 mentally retarded patients selected from 306 patients referred to our clinic. Giemsa-banding was done on all cases. Additional studies in abnormal cases included autoradiography and X and Y chromatin. Karyotype analyses and blood group (Xg and Duffy) studies were carried out in family members in some cases. Fourteen of these children had chromosomal abnormalities, seven sex chromosomal, and seven had autosomal abnormalities. Three patients had 45,X and one had a 45,X/46,Xr(X) karyotype. Other sex chromosomal abnormalities were 46,XX/48,XXXX; 48,XXXY/49,XXXXY; and 48,XXYY. Autosomal abnormalities were 46,XX,1q-; 46,XY,2q-; 46,XY,5p-; 46,XY,dup(5p); 45,XX,t(13,14); and 46,XY,17p-. This is the first report from India of cytogenetic abnormalities in idiopathic mental retardation. The chromosomal studies in these patients help not only in accurate diagnosis, proper prognosis, and genetic counseling but also in gene localization and in the study of the origin of X-chromosome abnormalities.
The testing for microdeletion 22q11.2 in isolated non-syndromic patients using FISH technique is mandatory even when mild/unspecific extracardiac abnormalities are seen in the patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.