With the recent advent of 4G LTE networks, there has been increasing interest to better understand the performance and power characteristics, compared with 3G/WiFi networks. In this paper, we take one of the first steps in this direction.Using a publicly deployed tool we designed for Android called 4GTest attracting more than 3000 users within 2 months and extensive local experiments, we study the network performance of LTE networks and compare with other types of mobile networks. We observe LTE generally has significantly higher downlink and uplink throughput than 3G and even WiFi, with a median value of 13Mbps and 6Mbps, respectively. We develop the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications. Using a comprehensive data set consisting of 5-month traces of 20 smartphone users, we carefully investigate the energy usage in 3G, LTE, and WiFi networks and evaluate the impact of configuring LTE-related parameters. Despite several new power saving improvements, we find that LTE is as much as 23 times less power efficient compared with WiFi, and even less power efficient than 3G, based on the user traces and the long high power tail is found to be a key contributor. In addition, we perform case studies of several popular applications on Android in LTE and identify that the performance bottleneck for web-based applications lies less in the network, compared to our previous study in 3G [24]. Instead, the device's processing power, despite the significant improvement compared to our analysis two years ago, becomes more of a bottleneck.
In Autonomous Vehicles (AVs), one fundamental pillar is perception, which leverages sensors like cameras and LiDARs (Light Detection and Ranging) to understand the driving environment. Due to its direct impact on road safety, multiple prior efforts have been made to study its the security of perception systems. In contrast to prior work that concentrates on camera-based perception, in this work we perform the first security study of LiDAR-based perception in AV settings, which is highly important but unexplored. We consider LiDAR spoofing attacks as the threat model and set the attack goal as spoofing obstacles close to the front of a victim AV. We find that blindly applying LiDAR spoofing is insufficient to achieve this goal due to the machine learning-based object detection process. Thus, we then explore the possibility of strategically controlling the spoofed attack to fool the machine learning model. We formulate this task as an optimization problem and design modeling methods for the input perturbation function and the objective function. We also identify the inherent limitations of directly solving the problem using optimization and design an algorithm that combines optimization and global sampling, which improves the attack success rates to around 75%. As a case study to understand the attack impact at the AV driving decision level, we construct and evaluate two attack scenarios that may damage road safety and mobility. We also discuss defense directions at the AV system, sensor, and machine learning model levels. CCS CONCEPTS• Security and privacy → Domain-specific security and privacy architectures; • Computer systems organization → Neural networks.
ABSTRACT3G cellular data networks have recently witnessed explosive growth. In this work, we focus on UMTS, one of the most popular 3G mobile communication technologies. Our work is the first to accurately infer, for any UMTS network, the state machine (both transitions and timer values) that guides the radio resource allocation policy through a light-weight probing scheme. We systematically characterize the impact of operational state machine settings by analyzing traces collected from a commercial UMTS network, and pinpoint the inefficiencies caused by the interplay between smartphone applications and the state machine behavior. Besides basic characterizations, we explore the optimal state machine settings in terms of several critical timer values evaluated using real network traces. Our findings suggest that the fundamental limitation of the current state machine design is its static nature of treating all traffic according to the same inactivity timers, making it difficult to balance tradeoffs among radio resource usage efficiency, network management overhead, device radio energy consumption, and performance. To the best of our knowledge, our work is the first empirical study that employs real cellular traces to investigate the optimality of UMTS state machine configurations. Our analysis also demonstrates that traffic patterns impose significant impact on radio resource and energy consumption. In particular, We propose a simple improvement that reduces YouTube streaming energy by 80% by leveraging an existing feature called fast dormancy supported by the 3GPP specifications.
Traceroute is widely used to detect routing problems, characterize end-to-end paths, and discover the Internet topology. Providing an accurate list of the Autonomous Systems (ASes) along the forwarding path would make traceroute even more valuable to researchers and network operators. However, conventional approaches to mapping traceroute hops to AS numbers are not accurate enough. Address registries are often incomplete and out-of-date. BGP routing tables provide a better IP-to-AS mapping, though this approach has significant limitations as well. Based on our extensive measurements, about 10% of the traceroute paths have one or more hops that do not map to a unique AS number, and around 15% of the traceroute AS paths have an AS loop. In addition, some traceroute AS paths have extra or missing AS hops due to Internet eXchange Points, sibling ASes managed by the same institution, and ASes that do not advertise routes to their infrastructure. Using the BGP tables as a starting point, we propose techniques for improving the IP-to-AS mapping as an important step toward an AS-level traceroute tool. Our algorithms draw on analysis of traceroute probes, reverse DNS lookups, BGP routing tables, and BGP update messages collected from multiple locations. We also discuss how the improved IP-to-AS mapping allows us to home in on cases where the BGP and traceroute AS paths differ for legitimate reasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.