The main aim of this paper is to study and establish some new fixed point theorems for contractive maps that satisfied Mizoguchi-Takahashi’s condition in the setting of bicomplex-valued metric spaces. These new results improve and generalize the Banach contraction principle and some well-known results in the literature. Finally, as applications of our results, we give the existence and uniqueness of the solution of a nonlinear integral equation.
<abstract><p>In present paper, we introduce a new extension of the double controlled metric-like spaces, so called double controlled quasi metric-like spaces "assuming that the self-distance may not be zero". Also, if the value of the metric is zero, then it has to be "a self-distance". After that, by using this new type of quasi metric spaces, we generalize many results in the literature and we prove fixed point theorems along with some examples illustrating.</p></abstract>
The purpose of this paper is to state some fixed point theorems in ordered bicomplex valued
metric spaces for generalized rational type contraction mappings. Examples are given to
illustrate the results. Also, some special cases of the established results are deduced as corollaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.