In this paper the problem of fault diagnosis in an aircraft jet engine is investigated by using an intelligent-based methodology. The proposed fault detection and isolation (FDI) scheme is based on the multiple model approach and utilizes autoassociative neural networks (AANNs). This methodology consists of a bank of AANNs and provides a novel integrated solution to the problem of both sensor and component fault detection and isolation even though possibly both engine and sensor faults may occur concurrently. Moreover, the proposed algorithm can be used for sensor data validation and correction as the first step for health monitoring of jet engines. We have also presented a comparison between our proposed approach and another commonly used neural network scheme known as dynamic neural networks to demonstrate the advantages and capabilities of our approach. Various simulations are carried out to demonstrate the performance capabilities of our proposed fault detection and isolation scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.