The Global Positioning System (GPS) has become widespread in many civilian applications. GPS signals are vulnerable to interference and even low-power interference can easily spoof GPS receivers. In this paper, two techniques are proposed based on correlators and adaptive filtering to diminish the effect of spoofing on GPS-based positioning. The suggested algorithms are implemented in the tracking loop of the receiver. As a first method, a high-resolution correlator is utilised to avoid big parts of the influence of interference. To improve the results, a multicorrelator technique is also employed. In the second method, an adaptive filter is used for estimating the parameters of authentic plus spoof signals. Interference elimination is performed by subtracting the estimated conflict effects from the measured correlation function. These techniques provide easy-to-implement quality assurance tools for anti-spoofing. As a primary step, in this article, the proposed algorithms have been implemented in a Software Receiver (SR) to prove the concept of idea in multipath-free environments. K E Y WO R D S1. Anti-Spoofing.2. Adaptive filters. 3. Correlator. 4. Tracking loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.