The Hedgehog (Hh) signaling pathway plays important roles in developmental processes including pattern formation and tissue homeostasis. The seven-pass transmembrane receptor Smoothened (Smo) is the pivotal transducer in the pathway; it, and thus the pathway overall, is regulated by ubiquitin-mediated degradation, which occurs in the absence of Hh. In the presence of Hh, the ubiquitination levels of Smo are decreased, but the molecular basis for this outcome is not well understood. Here, we identify the deubiquitinase UCHL5 as a positive regulator of the Hh pathway. We provide both genetic and biochemical evidence that UCHL5 interacts with and deubiquitinates Smo, increasing stability and promoting accumulation at the cell membrane. Strikingly, we find that Hh enhances the interaction between UCHL5 and Smo, thereby stabilizing Smo. We also find that proteasome subunit RPN13, an activator of UCHL5, could enhance the effect of UCHL5 on Smo protein level. More importantly, we find that the mammalian counterpart of UCHL5, UCH37, plays the same role in the regulation of Hh signaling by modulating hSmo ubiquitination and stability. Our findings thus identify UCHL5/UCH37 as a critical regulator of Hh signaling and potential therapeutic target for cancers.
Hedgehog (Hh) signalling plays conserved roles in controlling embryonic development; its dysregulation causes many diseases including cancers. The G protein-coupled receptor Smoothened (Smo) is the key signal transducer of the Hh pathway, whose posttranslational regulation has been shown to be critical for its accumulation and activation. Ubiquitination has been reported an essential posttranslational regulation of Smo. Here, we identify a novel E3 ligase of Smo, Herc4, which binds to Smo, and regulates Hh signalling by controlling Smo ubiquitination and degradation. Interestingly, our data suggest that Herc4-mediated Smo degradation is regulated by Hh in PKA-primed phosphorylation-dependent and independent manners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.