The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×10 −4 ) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0 6-0 8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4 kpc and a stellar mass of M * ∼(4-7)×107 M e , assuming a mass-to-light ratio between 2 to 3 M e L e −1 . Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M e yr −1 and a substantial host dispersion measure (DM) depth 324 pc cm −3 . The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al. is offset from the galaxy's center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.
Fast radio bursts (FRBs) are millisecond-duration, extragalactic radio flashes of unknown physical origin [1][2][3] . FRB 121102, the only known repeating FRB source [4][5][6] , has been localized to a star-forming region in a dwarf galaxy 7-9 at redshift z = 0.193, and is spatially coincident with a compact, persistent radio source 7,10 . The origin of the bursts, the nature of the persistent source, and the properties of the local environment are still debated. Here we present bursts that show ∼100% linearly polarized emission at a very high and variable Faraday rotation measure in the source frame: RM src = +1.46 × 10 5 rad m −2 and +1.33 × 10 5 rad m −2 at epochs separated by 7 months, in addition to narrow ( 30 µs) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, while the short burst durations argue for a neutron star origin. Such large rotation measures have, until now, only been observed 11,12 in the vicinities of massive black holes (M BH 10 4 M ). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole 10 . The bursts may thus come from a neutron star in such an environment. However, the observed properties may also be explainable in other models, such as a highly magnetized wind nebula 13 or supernova remnant 14 surrounding a young neutron star. 2Using the 305-m William E. Gordon Telescope at the Arecibo Observatory, we detected 16 bursts from FRB 121102 at radio frequencies from 4.1 − 4.9 GHz (Table 1). The data recorder provided complete polarization parameters with 10.24-µs time resolution. See Methods and Extended Data Figs. 1-6 for observation and analysis details.The 4.5-GHz bursts have typical widths 1 ms, which are narrower than the 2 to 9-ms bursts previously detected at lower frequencies 5,15 . In some cases they show multiple components and structure close to the sampling time of the data. Burst #6 is particularly striking, with a width of 30 µs, which constrains the size of the emitting region to 10 km, modulo geometric and relativistic effects. Evolution in burst morphology with frequency complicates the determination 5 of dispersion measure (DM = d 0 n e (l) dl), but aligning the narrow component in Burst #6 results in DM= 559.7 ± 0.1 pc cm −3 , which is consistent 4,5,15,16 with other bursts detected since 2012, and suggests that any bona fide dispersion measure variations are at the 1% level.After correcting for Faraday rotation, and accounting for ∼2% depolarization from the finite channel widths, the bursts are consistently ∼100% linearly polarized (Fig. 1). The polarization angles PA = PA ∞ + θ (where PA ∞ is a reference angle at infinite frequency, θ = RMλ 2 is the rotation angle of the electric field vector and λ is the observing wavelength) are flat across the observed frequency range and burst envelopes (∆PA 5 • ms −1 ). This could mean that the burst durations reflect the timescale of the emission process and n...
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1 − 8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 ± 0.07 pc cm −3 at MJD 57644. After correcting for dispersive delay, we find that the sub-bursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1 − 1.7 GHz band, the ∼ 0.5 − 1-ms sub-bursts have typical bandwidths ranging from 100 − 400 MHz, and a characteristic drift rate of ∼ 200 MHz/ms towards lower frequencies. At higher radio frequencies, the sub-burst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of ∆DM ∼ 1 − 3 pc cm −3 in 4 years, though this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula.
The millisecond-duration radio flashes known as fast radio bursts (FRBs) represent an enigmatic astrophysical phenomenon. Recently, the sub-arcsecond localization (∼100 mas precision) of FRB121102 using the Very Large Array has led to its unambiguous association with persistent radio and optical counterparts, and to the identification of its host galaxy. However, an even more precise localization is needed in order to probe the direct physical relationship between the millisecond bursts themselves and the associated persistent emission. Here, we report very-long-baseline radio interferometric observations using the European VLBI Network and the 305 m Arecibo telescope, which simultaneously detect both the bursts and the persistent radio emission at milliarcsecond angular scales and show that they are co-located to within a projected linear separation of 40 pc (12 mas angular separation, at 95% confidence). We detect consistent angular broadening of the bursts and persistent radio source (∼2-4 mas at 1.7 GHz), which are both similar to the expected Milky Way scattering contribution. The persistent radio source has a projected size constrained to be 0.7 pc (0.2 mas angular extent at 5.0 GHz) and a lower limit for the brightness temperature of T 5 10 K b 7´. Together, these observations provide strong evidence for a direct physical link between FRB121102 and the compact persistent radio source. We argue that a burst source associated with a low-luminosity active galactic nucleus or a young neutron star energizing a supernova remnant are the two scenarios for FRB121102 that best match the observed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.