Graded porous titanium coatings have been deposited on titanium substrates for dental implants by plasma spraying in an argon atmosphere. X-ray diffraction (XRD), scanning electron microscopy (SEM), surface roughness measurement, and tensile strength tests were performed on graded porous coatings. The results showed that Ti(3)O(5) was formed in the outermost surface of the porous coatings due to oxidation. The graded porous coatings consisted of three layers. The outer layer was full of macropores with a surface roughness of approximately 100 microm. The diameter of many macropores reached and even surpassed 150 microm, which could be beneficial for tissue to grow into the coating. The middle layer consisted of a mixture of micropores and macropores. The inner layer was a very dense and tight interface layer that included mechanical, physical, and metallurgical bonding. In tensile strength tests, testing bars peeled off the coatings, because the adhesive agent fractured, but the coatings remained intact.
We modified Ti surfaces by implantation of amino (NH(2+)) groups at 10(16) and 10(17) cm(-2). The implanted surfaces were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning Auger electron spectroscopy (AES), and second ion mass spectroscopy (SIMS). The experimental results showed that the implanted Ti specimens were covered by a dominant hydrocarbon overlayer due to contamination and the surface oxide layer of implanted specimens became thicker. XPS, AES, and SIMS depth profiles showed that implanted elements had a typical ion implantation distribution and that titanium nitride (TiN) was formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.