a b s t r a c tThe carbon coated Fe 3 O 4 nanoparticles (Fe 3 O 4 /C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe 3 O 4 /C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2-0.6 ng L −1 . The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76-110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe 3 O 4 /C nanoparticles are used for the pretreatment of environmental water samples.
Nanometer-sized In particles (5−45 nm) embedded in the Al matrix were prepared by using melt-spinning and ball-milling techniques. Different crystallographic orientationships between In nanoparticles and the Al matrix were constructed by these two approaches. Melting behavior of the In particles were investigated by means of differential scanning calorimetry (DSC). It was found that the epitaxially oriented In nanoparticles (with the Al matrix) in the melt-spun sample were superheated to about 0−38 °C, whereas the randomly oriented In particles in the ball-milled sample melted below its equilibrium melting point by about 0−22 °C. We suggest that the melting temperature of In nanoparticles can be either enhanced or depressed, depending on the epitaxy between In and the Al matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.