A simple approach for preparing near-infrared (NIR) to visible upconversion (UC) NaYF4:Yb/Er/Gd nanorods in combination with gold nanostructures has been reported. The grown UC nanomaterials with Au nanostructures have been applied to flexible amorphous silicon solar cells on the steel substrates to investigate their responses to sub-bandgap infrared irradiation. Photocurrent–voltage measurements were performed on the solar cells. It was demonstrated that UC of NIR light led to a 16-fold to 72-fold improvement of the short-circuit current under 980 nm illumination compared to a cell without upconverters. A maximum current of 1.16 mA was obtained for the cell using UC nanorods coated with Au nanoparticles under 980 nm laser illumination. This result corresponds to an external quantum efficiency of 0.14% of the solar cell. Mechanisms of erbium luminescence in the grown UC nanorods were analyzed and discussed.
We present a fast and simple protocol for large-scale preparation of quaternary Cu(2)ZnSnSe(4) (CZTSe), as well as CZTSe/Cu(2)ZnSnS(4) (CZTS) core/shell nanowires using CuSe nanowire bundles as self-sacrificial templates. CuSe nanowire bundles were synthesized by reacting Cu(2 - x)Se nanowire bundles with sodium citrate solution. CZTSe nanowires were prepared by reacting CuSe nanowire bundles with Zn(CH(3)COO)(2) and SnCl(2) in triethylene glycol. X-ray diffraction (XRD) and selected area electron diffraction studies show that stannite CZTSe is formed. The formed CZTSe nanowire bundles have diameters of 200-400 nm and lengths of up to hundreds of micrometers. CZTSe/CZTS nanocable bundles with similar morphologies were grown by the addition of some elemental sulfur to the reaction system for growth of CZTSe bundles. The stannite CZTSe/kesterite CZTS core/shell structure of the grown nanocables was confirmed by XRD and high-resolution transmission electron microscope investigation. The influence of S/Se molar ratio in the reaction system on the crystallographic structures and optical properties of CZTSe/CZTS nanocables was studied. The obtained CZTSe/CZTS core/shell nanocable bundles show broad and enhanced optical absorption over the visible and near-infrared region, which is promising for use in photovoltaic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.