In this study, the elastic properties of two high-pressure polymorphs SiO2 nanostructure, stishovite and CaCl2-type, are obtained using Density Functional Theory in 0-80 GPa high pressure domain at zero temperature, based on reducing an interacting many-electron problem to a single-electron problem. It is shown that below 40 GPa, the stishovite phase is more stable; superior to this limit, the CaCl2-type phase becomes more stable, using Gibbs free energy method. Furthermore, the pressure dependence of the density, volume, bulk, and shear moduli were defined in the selected pressure domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.