Molybdenum disulfide (MoS2) is a layered semiconducting material with a tunable bandgap that is promising for the next generation nanoelectronics as a substitute for graphene or silicon. Despite recent progress, the synthesis of high‐quality and highly uniform MoS2 on a large scale is still a challenge. In this work, a temperature‐dependent synthesis study of large‐area MoS2 by direct sulfurization of evaporated Mo thin films on SiO2 is presented. A variety of physical characterization techniques is employed to investigate the structural quality of the material. The film quality is shown to be similar to geological MoS2, if synthesized at sufficiently high temperatures (1050 °C). In addition, a highly uniform growth of trilayer MoS2 with an unprecedented uniformity of ±0.07 nm over a large area (> 10 cm2) is achieved. These films are used to fabricate field‐effect transistors following a straightforward wafer‐scale UV lithography process. The intrinsic field‐effect mobility is estimated to be about 6.5±2.2 cm2 V–1 s–1 and compared to previous studies. These results represent a significant step towards application of MoS2 in nanoelectronics and sensing.
Atomically thin molybdenum disulfide (MoS2) is a promising two-dimensional semiconductor for high-performance flexible electronics, sensors, transducers, and energy conversion. Here, piezoresistive strain sensing with flexible MoS2 field-effect transistors (FETs) made from highly uniform large-area films is demonstrated. The origin of the piezoresistivity in MoS2 is the strain-induced band gap change, which is confirmed by optical reflection spectroscopy. In addition, the sensitivity to strain can be tuned by more than 1 order of magnitude by adjusting the Fermi level via gate biasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.