In this chapter a review is given of recent research on nanostructured magnetic films of interest for future peripheral microelectronics or magnetoelectronics applications. Various classes of materials are discussed with emphasis on the design of the nanoscale structure to achieve needed physical properties. Requirements for future ultra high density recording media are discussed, and several novel materials, with complex nanostructures, are presented as candidates. New high coercivity films with about 10 run grains are discussed along with challenges and opportunities for further advances.
CoSm films with a Cr underlayer (CoSm//Cr) are promising as future high density recording media.1 It was pointed out that the grain size in media affects the media noise and thermal stability significantly. However, if small grains are exchange coupled to form larger “magnetic grains,” the size of these magnetic clusters will be important in noise considerations. Our previous works23 indicated that for CoSm film with Cr underlayer the magnetic grain size is much larger than the 50 Å nanocrystallites and is about the same size as the Cr grain of ∼240 Å in dimension. In the present work, we report our systematic studies of magnetic switching volume and its correlation with magnetic and nanostructural properties for CoSm films. Switching volumes V* were measured with the “field sweep-rate dependence of coercivity Hc,” interactions among the magnetic grains were estimated with the so-called ΔM method, and the nanostructures were investigated with atomic force microscopy and transmission electron microscopy. The thickness of CoSm layers, which were sputtered in an Ar pressure PAr=25 mT, is 300 Å for all samples. It is found that as the Cr underlayer thickness dCr increases from 0 Å (without a Cr underlayer) to 200 Å, the V* and ΔMmax decrease (Hc increases) rapidly, i.e., from V* from 9.3×10−18 to 5.7×10−18 cm3, ΔMmax from 1.3 to 0.5 (Hc from 1.4 to 2.3 kOe), respectively, and then gradually as dCr approaches 800 Å. As Ar pressure PAr of the deposition of the Cr underlayer varies from 5 to 30 mT, the V* and ΔMmax have their minima (anisotropy Ku has its maximum) at PAr≃9.5 mT. V* shows minima at dCr and PAr values where Hc and Ku have their maxima and ΔMmax has a small value. This behavior can be interpreted with a thermal activation model including interactions between magnetic grains. The relationship between crystallite grain size, magnetic grain V*, and media noise will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.