This study was conducted to estimate dietary zinc (Zn) levels on growth performance, carcass traits, and intramuscular fat (IMF) deposition in weaned piglets. Sixty piglets were randomly divided into five groups, as follows: control (basal diet), Zn250, Zn380, Zn570, and Zn760 with supplementation of 250, 380, 570, and 760 mg Zn/kg of the basal diet, respectively. The final weight, average daily gain (ADG), gain/feed (G/F), lean meat percentage, fat meat percentage, lean eye area, backfat thickness, and IMF content were dose-dependently increased in all groups of Zn treatment. The serum total triglycerides (TG) and free fatty acid (FFA) were significantly higher in all Zn treatments than in the control. The enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were markedly higher, while enzyme activities of hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) were significantly lower in all Zn treatments than in the control. The messenger RNA (mRNA) levels of sterol regulatory element-binding protein 1 (SREBP-1), stearoyl-CoA desaturase (SCD), FAS, ACC, peroxisome proliferator-activated receptor γ (PPARγ), LPL, and adipocyte fatty acid-binding protein (A-FABP) were significantly higher, while the mRNA levels of CPT-1 and HSL were significantly lower in all Zn treatments compared with the control. These results indicated that high levels of Zn increased IMF accumulation by up-regulating intramuscular lipogenic and fatty acid transport gene expression and enzyme activities while down-regulating lipolytic gene expression and enzyme activities.
ObjectiveThis study evaluated the effects of different levels of protein concentrate supplementation on the growth performance of yak calves, and correlated the growth rate to changes occurring in the plasma- amino acids, -insulin profile, and signaling activity of mammalian target of rapamycin (mTOR) cascade to characterize the mechanism through which the protein synthesis can be improved in early weaned yaks.MethodsFor this study, 48 early (3 months old) weaned yak calves were selected, and assigned into four dietary treatments according to randomized complete block design. The four blocks were balanced for body weight and sex. The yaks were either grazed on natural pasture (control diet) in a single herd or the grazing yaks was supplemented with one of the three protein rich supplements containing low (17%; LP), medium (19%; MP), or high (21%; HP) levels of crude proteins for a period of 30 days.ResultsResults showed that the average daily gain of calves increased (0.14 vs 0.23–0.26 kg; p<0.05) with protein concentrates supplementation. The concentration of plasma methionine increased (p<0.05; 8.6 vs 10.1–12.4 μmol/L), while those of serine and tyrosine did not change (p>0.05) when the grazing calves were supplemented with protein concentrates. Compared to control diet, the insulin level of calves increased (p<0.05; 1.86 vs 2.16–2.54 μIU/mL) with supplementation of protein concentrates. Addition of protein concentrates up-regulated (p<0.05) expression of mTOR-raptor, mammalian vacuolar protein sorting 34 homolog, the translational regulators eukaryotic translation initiation factor 4E binding protein 1, and S6 kinase 1 genes in both Longissimus dorsi and semitendinosus. In contrast, the expression of sequestosome 1 was down-regulated in the concentrate supplemented calves.ConclusionOur results show that protein supplementation improves the growth performance of early weaned yak calves, and that plasma methionine and insulin concentrations were the key mediator for gene expression and protein deposition in the muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.