This paper reports the dielectric relaxation studies of carbon nanotubes loaded in polyester polymer matrix. The study was carried out in the frequency range between 100 Hz and 1 MHz at constant temperature, T = 300 K. The frequency dependence of the electrical data was treated in the frameworks of the impedance Havriliak-Negami formalism and by using the universal Jonscher power law. The imaginary and real parts of the dielectric permittivity change with concentration of the carbon nanotubes. This work consists in studying the influence of these nanoparticles on the dielectric properties, describing the electrical relaxation and the conduction mechanisms.
Binary and ternary composites were synthesized using a polyester matrix reinforced by two types of carbon inclusions, namely, carbon nanotubes (CNT) and graphite (Gt) (CNT/Gt/Polyester). Thermal analyses were performed, using thermogravimetry and differential scanning calorimetry, which allowed us to observe significant changes in glass transition temperatures and degradation temperatures of the composites. Dielectric measurements were performed in a frequency range from 100 Hz to 1 MHz and temperature from –33 to 107°C. The dielectric permittivity values of the CNT/Gt/Polyester ternary composites, compared to the Gt/Polyester binary composites, indicate that the addition of CNT particles to the Gt/Polyester binary system significantly improved the dielectric permittivity, due to the enhanced interfacial polarization of the host matrix, while the frequency dependence of the electrical modulus spectra revealed a Maxwell–Wagner–Sillars dielectric relaxation process that was found to follow the Cole–Davidson approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.