A radial basis function method for solving time-fractional KdV equation is presented. The Caputo derivative is approximated by the high order formulas introduced in Buhman (Proc. Edinb. Math. Soc. 36:319-333, 1993). By choosing the centers of radial basis functions as collocation points, in each time step a nonlinear system of algebraic equations is obtained. A fixed point predictor-corrector method for solving the system is introduced. The efficiency and accuracy of our method are demonstrated through several illustrative examples. By the examples, the experimental convergence order is approximately 4 − α, where α is the order of time derivative.Mathematics Subject Classification 65D05 · 65M06 · 65N06 · 65N35
In this paper, radial basis functions (RBFs) method is proposed for numerical solution of the Liouville–Caputo time- and Riesz space-fractional Fokker–Planck equation with a nonlinear source term. The left-sided and the right-sided Riemann–Liouville fractional derivatives of RBFs are computed and utilized to approximate the spatial fractional derivatives of the unknown function. Also, the time-fractional derivative is discretized by the high order formulas introduced in [J. X. Cao, C. P. Li and Y. Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calculus Appl. Anal. 18(3) (2015) 735–761]. In each time step, via a collocation method, the computations of fractional Fokker–Planck equation are reduced to a linear or nonlinear system of algebraic equations. Several numerical examples are included to demonstrate the applicability, accuracy and stability of the method. Some comparisons are made with the existing results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.