Two dimensionally guided M mode and Doppler echocardiographic data for 578 male subjects (106 non-athletic and 472 athletes) were analysed from two aspects: (a) in the young adult category (19-30 years of age), competitors in diVerent groups of sports were studied; (b) in the diVerent age groups (children, 10-14 years; adolescent juniors, 15-18 years; young adults, 19-30 years; adults, 31-44 years; older adults 45-60 years), data for athletes and non-athletes were compared. Morphological variables were related to body size by indices in which the exponents of the numerator and denominator were matched. Morphological signs of athletic heart were most consistently evident in the left ventricular muscle mass: in the young adult group, the highest values were seen in the endurance athletes, followed by the ball game players, sprinters/jumpers, and power athletes. A thicker muscular wall was the main reason for this hypertrophy. Internal diameter was only increased in the endurance athletes, and this increase was more evident in the younger groups. The E/A quotient (ratio of peak velocity during early and late diastole) indicated more eVective diastolic function in the endurance athletes. The values for E/A quotient also suggested that regular physical activity at an older age may protect against age dependent impairment of diastolic function. (Br J Sports Med 2001;35:95-99)
Results indicate that high-level water polo results in marked cardiac hypertrophy that involves predominantly an increase of wall thickness, and in a VO(2max) lower than that of endurance athletes but similar to those of basketball and soccer players.
The purpose of this cross-sectional investigation was to estimate the age at which specific traits of the "athlete's heart" first appear and how they evolve from the beginning of regular physical training until young adulthood in healthy active males. Male athletes (n=389) and non-athletes (n=55) aged between 9 and 20 years were examined by two-dimensionally guided M-mode and Doppler echocardiography. Intragroup differences were examined by t-tests for independent samples between age groups of two years each. Morphologic variables were related to body size by using ratio indices in which the power terms of numerator and denominator were matched. Relative left ventricular muscle mass (LVMM) was significantly larger in the athletic males at age of 11-12, and this significant difference was maintained with advancing age. Most of this increase of LVMM could be attributed to the increase in wall thickness that became significantly manifest first in the 13- to 14-year-old athletic subjects but was demonstrable in all the other groups. A significantly larger left ventricular internal diameter was only found in the age-group of 15-16. Fractional shortening percentage (FS%) did not show any change, while resting heart rate was decreased in our athletic groups.
Characteristics of the athlete's heart have been investigated mostly in the left ventricle (LV); reports referring to the right ventricle (RV) have only appeared recently. The aim of the present study was to compare the training effects on RV and LV in elite male endurance athletes. To this end, echocardiography was conducted in 52 elite endurance athletes (A) and in 25 non-athletes (NA). Differences between A and NA in the morphology was more marked in the RV (body-size-matched (rel.)) long axis diastolic diameter (RVLADd): 63.4 ± 6.3 vs. 56.4 ± 6.3; rel. short axis diastolic diameter (RVSADd): 27.3 ± 3.6 vs. 23.6 ± 2.7 mm/m, RV diastolic area 28 ± 5.0 vs. 21.3 ± 4.3 cm 2 in all cases, p < 0.001) than in the LV (rel. LVLADd: 63.8 mm/m ± 5.6 vs. 60.7 mm/m ± 6.6, p < 0.05, rel.LVSADd 37.8 ± 3.1 vs. 35.3 ± 2.4, no difference). In the athletes ratios of peak early to late diastolic filling velocity (2.07 ± 0.51 vs. 1.75 ± 0.36, p < 0.01), the TDI-determined E'/A' ratio in the septal (1.89 ± 0.55 vs. 1.62 ± 0.55, p < 0.05) and lateral (2.62 ± 0.72, vs. 2.18 ± 0.87, p < 0.001) walls were significantly higher than in NA only in the LV. Results indicate that in male endurance athletes morphologic adaptation is similar or slightly stronger in the RV than in the LV, functional adaptation seems to be stronger in the LV.
such as anorexia and bulimia. However this is not a simple lecture through the psychosomatic pathology as traditionally conceived,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.