Temporal quantum fluctuations of the intensity of light pulses produced in the linear regime of stimulated Raman scattering are observed. A theoretical description based on the concept of coherent temporal modes is presented. The method makes use of a minimum number of random variables, which are the excitation amplitudes of the temporal modes, and allows an estimate of the probability for generating a Stokes pulse that is likely to form a soliton in the nonlinear propagation regime.
In the coherent anti-Stokes Raman scattering process, the spectrum of the generated optical phonon depends on the degree of temporal correlation between the pump laser field and the Stokes field. When the two fields are strongly correlated, such as when the Stokes field is generated with stimulated Raman scattering (SRS), the spectral shape of the optical phonon is found experimentally and theoretically to be the same as the gain-narrowed Raman line shape because the laser phase fluctuations cancel out totally, leaving only the collisional noise in the SRS process. When the two fields are uncorrelated, the shape of the optical-phonon spectrum is found to be the same as the Raman line shape without gain narrowing. When two fields are partially correlated, then the two spectral components appear together. We provide a method to measure the degree of correlation between two optical fields that have different central frequencies. The theory developed to interpret the experimental results is an extension of the quantum theory of SRS to include anti-Stokes scattering. We show that only in the high-gain limit can the quantum fluctuations be thought of as arising from a classical noise process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.