Bone marrow cells are routinely accessed clinically for cartilage repair. This study was performed to determine whether adeno-associated virus (AAV) effectively transduces human bone marrow-derived mesenchymal stem cells (hMSC) in vitro, whether AAV infection interferes with hMSC chondrogenesis and whether AAV-transforming growth factor-beta-1 (TGF-b1)-transduced hMSC can improve cartilage repair in vivo. Adult hMSC were transduced with AAVgreen fluorescent protein (GFP) or AAV-transforming growth factor b1 (TGFb1) and studied in pellet cultures. For in vivo studies, AAV-GFP and AAV-TGF-b1-transduced hMSCs were implanted into osteochondral defects of 21 athymic rats. GFP was detected using fluorescent microscopy.Cartilage repair was assessed using gross and histological analysis at 4, 8 and 12 weeks. In pellet culture, GFP expression was visualized in situ through 21 days in vitro. In vivo GFP transgene expression was observed by in situ fluorescent surface imaging in 100% of GFP implanted defects at 2 , 67% at 8 and 17% at 12 weeks. Improved cartilage repair was observed in osteochondral defects implanted with AAV-TGF-b1-transduced hMSC at 12 weeks (P ¼ 0.0047). These results show that AAV is a suitable vector for gene delivery to improve the cartilage repair potential of human mesenchymal stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.