Abstract:The tangential contact forces that arise at the interface between the wheel of a railway vehicle and the rail provide all the traction, braking, and guidance required by the vehicle. These forces are the result of microslip or creepage and can become unstable exciting vibration of the wheel, particularly at frequencies corresponding to the wheel's axial (and radial) modes.Although theories exist for predicting these creep forces and their relationship to creepages, most lack experimental verification in the characterization of the falling friction coefficient during unsteady squealing. This paper presents some new results from a project which aims to develop a complete, validated model of curve squeal noise generation accounting for friction characteristics, excitation due to unstable forces between the wheel and rail and vehicle dynamic behaviour. The model includes wheel and track dynamic response and acoustic radiation. As part of the project, a twin disc rig has been modified to provide experimental data for the validation of the model and measurements were made of the lateral force and dynamic response of the rollers due to varying amounts of lateral creepage during squealing. The main feature of the twin disc rig compared with previous research [1] is that the contact force measuring system measures the contact forces at the web of the rollers and therefore close to the contact patch and through a slipring arrangement enables the lateral vibration of both rollers in relation to squeal be measured with relative ease.In this paper, detailed descriptions of the twin disc rig and the test method developed are given. An outline of the squeal model is also presented. Results from the tests have been compared with the prediction from the squeal model and with available theories and showed good agreement.
The wheels of power and trailer wheelset show different polygonal characteristics since their structures are obviously different. Therefore, the frictional self-excited vibration models of wheelset-track systems are established based on the viewpoint of the frictional self-excited vibration in reducing the wheel polygonal wear. Then, the motion stability of wheelset-track systems is studied by using the complex eigenvalue method. The results show that when the creep force between the wheel and rail is saturated, the unstable vibration frequency of the power wheelset is prone to induce 19-20th-order polygonal wear of the wheel, and the trailer wheelset is prone to induce 20-21th-order polygonal wear of the wheel. Meanwhile, the wheel polygonal wear can be effectively alleviated through changing the gearbox position of the power wheelset. And avoiding disc braking at high speeds can suppress the occurrence of wheel polygonal wear. In addition, the development tendency of wheel polygonal wear can be reduced by increasing the Young’s modulus of the brake pad, but Poisson’s ratio has little effect on the development tendency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.