A brief review of the historical development of photonic bandgap (PBG) materials is provided and the fabrication methods employed are discussed with emphasis on self‐assembly processes. The factors influencing the generation of a complete bandgap, from both an experimental and a calculational standpoint are then presented and discussed. The Figure shows a diamond‐like 3D periodic structure.
Three‐dimensional photonic crystals with full bandgaps at optical wavelengths can be fabricated with inverse‐opal techniques. We have shown that the bandgap is extremely sensitive to the presence of geometric disorder in the crystals (see Figure). The bandgap closes completely with a disorder strength as small as under two percent of the lattice constant. This fragility persists even at very high refractive index contrasts and is attributed to the creation of a bandgap at high frequency bands (8–9 bands) in inverse‐opal crystals. This should impose severe demand on the quality of lattice uniformity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.