The objective of the current work was to assess the capability of Fourier transform infrared (FT-IR) spectroscopy in combination with chemometric methods to discriminate animal-derived feedstuffs from different origins based on the lipid characteristics. A total of 82 lipid samples extracted from animal-derived feedstuffs, comprising porcine, poultry, bovine, ovine, and fish samples, were investigated by gas chromatography and FT-IR. The relationship between the lipid constitutions and the responding FT-IR spectral characteristics were explored. Results indicated that high correlations ( > 0.900) were found between the contents of MUFA and PUFA and FT-IR spectral data. In addition, the peak intensity at about 1,116 and 1,098 cm-1 showed a significant difference ( < 0.05) between ruminant and nonruminant animals; the change of peak ratio (1,116:1,098) was proved consistent with the degree of unsaturation of lipid from different animal species. Successful discrimination was further achieved among porcine, poultry, bovine, and ovine meat and bone meal (MBM) and fishmeal based on lipid characteristics by applying the FT-IR spectra coupled with chemometrics, for which the values of sensitivity and specificity were close to 1 and classification error were almost equal to 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.