We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q2 and high-Q2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.Comment: 9 pages, 7 figures. Published on Phys. Lett.
Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the arXiv:1907.08218v2 [nucl-ex] Rikutaro Yoshida (ryoshida@jlab.org) INTRODUCTIONAtomic nuclei lie at the core of everything we can see; and at the first level of approximation, their atomic weights are simply the sum of the masses of all the neutrons and protons (nucleons) they contain. Each nucleon has a mass m N ∼ 1 GeV, i.e. approximately 2000-times the electron mass. The Higgs boson produces the latter, but what produces the masses of the neutron and proton? This is the crux: the vast majority of the mass of a nucleon is lodged with the energy needed to hold quarks together inside it; and that is supposed to be explained by QCD, the strong-interaction piece within the Standard Model.QCD is unique. It is a fundamental theory with the capacity to sustain massless elementary degrees-of-freedom, viz. gluons and quarks; yet gluons and quarks are predicted to acquire mass dynamically [1][2][3], and nucleons and almost all other hadrons likewise, so that the only massless systems in QCD are its composite NG bosons [4,5], e.g. pions and kaons. Responsible for binding systems as diverse as atomic nuclei and neutron stars, the energy associated with the gluons and quarks within these Nambu-Goldstone (NG) modes is not readily apparent. This is in sharp and fascinating contrast with all other "everyday" hadronic bound states, viz. systems constituted from up = u, down = d, and/or strange = s quarks, which possess nuclear-size masses far in excess of anything that can directly be tied to the Higgs boson. 1
We extract the proton charge radius from the elastic form factor (FF) data using a novel theoretical framework combining chiral effective field theory and dispersion analysis. Complex analyticity in the momentum transfer correlates the behavior of the spacelike FF at finite Q 2 with the derivative at Q 2 = 0. The FF calculated in the predictive theory contains the radius as a free parameter. We determine its value by comparing the predictions with a descriptive global fit of the spacelike FF data, taking into account the theoretical and experimental uncertainties. Our method allows us to use the finite-Q 2 FF data for constraining the radius (up to Q 2 ∼ 0.5 GeV 2 and larger) and avoids the difficulties arising in methods relying on the Q 2 → 0 extrapolation. We obtain a radius of 0.844(7) fm, consistent with the high-precision muonic hydrogen results.
Future experiments at the Jefferson Lab 12 GeV upgrade, in particular, the Solenoidal Large Intensity Device (SoLID), aim at a very precise data set in the region where the partonic structure of the nucleon is dominated by the valence quarks. One of the main goals is to constrain the quark transversity distributions. We apply recent theoretical advances of the global QCD extraction of the transversity distributions to study the impact of future experimental data from the SoLID experiments. Especially, we develop a simple strategy based on the Hessian matrix analysis that allows one to estimate the uncertainties of the transversity quark distributions and their tensor charges extracted from SoLID data simulation. We find that the SoLID measurements with the proton and the effective neutron targets can improve the precision of the u-and d-quark transversity distributions up to one order of magnitude in the range 0.05 < x < 0.6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.