A modular irregular graph is a graph that admits a modular irregular labeling. A modular irregular labeling of a graph G of order n is a mapping of the set of edges of the graph to 1,2 , … , k such that the weights of all vertices are different. The vertex weight is the sum of its incident edge labels, and all vertex weights are calculated with the sum modulo n . The modular irregularity strength is the minimum largest edge label such that a modular irregular labeling can be done. In this paper, we construct a modular irregular labeling of two classes of graphs that are biregular; in this case, the regular double-star graph and friendship graph classes are chosen. Since the modular irregularity strength of the friendship graph also holds the minimal irregularity strength, then the labeling is also an irregular labeling with the same strength as the modular case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.