ABSTRACT. Plant traits are important indices for regulating and controlling yield ability in soybean varieties. It is important to comprehensively study the quantitative trait locus (QTL) mapping for soybean plant traits, cloning related genes, and marker assistant breeding. In this study, 236 F 2 generation plants and a derivative group were constructed by using Jiyu50 and Jinong18, obtained from Jilin Province. A total of 102 simple sequence repeat markers were used to construct a genetic linkage map. With 2 years of molecular and phenotypic data, QTL analyses and mapping were conducted for soybean maturity, plant height, main stem node, main stem branch, seed weight per plant, and more. Five main plant traits were analyzed via inclusive composite interval mapping using QTL IciMapping v2.2. Using one-dimensional scanning, a total of 30 QTLs were detected and distributed across 1 (A1), 4 (C2), and 12 (G). There were 9 linkage groups, including 16 major QTLs. Using two-dimensional scanning, 7 pairs of epistatic QTL interactions for maturity and plant height were detected in the soybean.
Clinical Relevance Acid-functional monomers in self-adhesive resin cements may decrease their self-curing polymerization ability. Light irradiation optimizes polymerization performance. SUMMARY Purpose: The aim of this study was to investigate Knoop microhardness of self-adhesive resin cements under dual- and self-curing modes in simulated canals for describing the polymerization behavior. Methods and Materials: Slots in lightproof silicone cylinders with one open end were filled with the following eight materials: a traditional resin cement (Duolink), a core build-up resin material (MultiCore Flow), and six self-adhesive resin cements (RelyX Unicem 2, G-Cem Automix, Maxcem, Biscem, Multilink Speed, and PermaCem 2.0). The resins were exposed to light through the open end and then stored in a lightproof box. The Knoop hardness gradient for each resin was measured after 1 hour and 120 hours. Surface readings were obtained at 1-mm intervals from 1 mm to 10 mm away from the open ends. The data were analyzed by two-way analysis of variance and the Student-Newman-Keuls test (α=0.05). Results: All the resin materials had stable Knoop hardness numbers (KHNs) at a certain depth; their KHNs in the self-curing mode did not change (p>0.05). The region above this certain depth was regarded as having undergone the dual-curing mode, and the KHN decreased gradually with depth (p<0.05). Between 1 and 120 hours postexposure, the ratio of the KHN at a 5-mm depth (self-cured) to that at a 1-mm depth (dual-cured) increased in Duolink and MultiCore Flow. However, the ratios of the six adhesive resin cements varied. Conclusion: Without light, most self-adhesive resin cements differed from traditional dual-cured resin materials in terms of Knoop micro-hardness, and they had a lesser capacity for chemical-induced curing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.