Abstract. A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black carbon (BC ~ 0.2 μg m−3). Particle-phase sulfate is fairly correlated (r2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2 = 0.38) and nitrate (r2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.
We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.
Considering oscillatory laminar incompressible three-dimensional flow in triple planar and nonplanar bifurcations representing generations three to six of the human respiratory system, air flow fields and micron-particle transport have been simulated under normal breathing and high-frequency ventilation (HFV) conditions. A finite-volume code (CFX4.3 from AEA Technology, Pittsburgh, PA) and its user-enhanced FORTRAN programs were validated with experimental velocity data points for a single bifurcation. The airflow structures and micron-particle motion in the triple bifurcations were analyzed for a representative normal breathing cycle as well as HFV condition. While both the peak inspiratory and expiratory velocity profiles for the low Womersley case (α=0.93) agree well with those of instantaneously equivalent steady-state cases, some differences can be observed between flow acceleration and deceleration at off-peak periods or near flow reversal, especially during inspiratory flow. Similarly, the basic features of instantaneous particle motion closely resemble the steady-state case at equivalent inlet Reynolds numbers. The preferential concentration of particles caused by the coherent vortical structures was found in both inhalation and exhalation; however, it is more complicated during expiration. The effects of Womersley number and non-planar geometries as well as the variations in secondary flow intensity plus pressure drops across various bifurcations under normal breathing and HFV conditions were analyzed as well. This work may elucidate basic physical insight of aerosol transport relevant in dosimetry-and-health-effect studies as well as for drug aerosol delivery analyses.
The understanding and quantitative assessment of air flow fields and local micron-particle wall concentrations in tracheobronchial airways are very important for estimating the health risks of inhaled particulate pollutants, developing algebraic transfer functions of global lung deposition models used in dose-response analyses, and/or determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part 1) the theory, model geometries, and air flow results are provided. In a companion paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and comparisons with measured data sets are reported. Decoupling of the naturally dilute particle suspension makes it feasible to present the results in two parts.Considering a Reynolds number range of 500 [les ] ReD [les ] 2000, it is assumed that the air flow is steady, incompressible and laminar and that the tubular double bifurcations, i.e. Weibel's generations G3–G5, are three-dimensional, rigid, and smooth with rounded as well as sharp carinal ridges for symmetric planar, and just rounded carinas for 90° non-planar configurations. The employed finite-volume code CFX (AEA Technology) and its user-enhanced FORTRAN programs were validated with experimental velocity data points for a single bifurcation. The resulting air flow structures are analysed for relatively low (ReD = 500) and high (ReD = 2000) Reynolds numbers. Sequential pressure drops due to viscous effects were calculated and compared, extending a method proposed by Pedley et al. (1977). Such detailed results for bifurcating lung airways are most useful in the development of global algebraic lung models.
Abstract. Isoprene epoxydiol (IEPOX) isomers are key gas-phase intermediates of isoprene atmospheric oxidation. Secondary organic aerosols derived from such intermediates have important impacts on air quality and health. We report here convergent and unambiguous pathways developed for the synthesis of isomeric IEPOX species and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran in good yield. The availability of such compounds is necessary to expedite research on isoprene atmospheric oxidation mechanisms and subsequent aerosol formation as well as the toxicological properties of the aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.