Dysregulated microRNAs (miRNAs) have an important role in many malignant tumors. However, elucidating the roles of miRNAs in cancer biology, especially in epithelial cancers, remains an ongoing process. In this study, we show that both miR-143 and miR-145, which belong to the same miRNA cluster, can negatively modulate expression of their target gene, MDM2. The miR-143 and miR-145 is posttranscriptionally activated by upregulated p53, thereby generating a short miRNAs-MDM2-p53 feedback loop. Re-expression of these miRNAs suppresses cellular growth and triggers the apoptosis of epithelial cancer, in vitro and in vivo, by enhancing p53 activity via MDM2 turnover. Moreover, the miRNA-dependent MDM2 turnover contributes to the equilibrium of repeated p53 pulses in response to DNA damage stress. These findings suggest that MDM2 dysregulation caused by downregulation of miR-143 and miR-145 contributes to epithelial cancer development and has a key role in regulating cellular proliferation and apoptosis. Re-expression of miR-143 and miR-145 may be a reasonable strategy for treatment of epithelial cancers.
OBJECTIVE: To investigate the effects of mandibular defects repaired by a tissue engineered bone complex with b-tricalcium phosphate (b-TCP) and bone morphogenic protein-2 (BMP-2) gene-modified bone marrow stromal cells (bMSCs). MATERIALS AND METHODS: bMSCs derived from Fisher 344 rats were cultured and transduced with adenovirus AdBMP-2, AdEGFP gene in vitro. Osteogenic differentiation of bMSCs was determined by alkaline phosphatase staining, von Kossa assay and reverse transcription-polymerase chain reaction. Gene transduced or untransduced bMSCs were seeded on b-TCP scaffolds to repair mandibular full thickness defects with a diameter of 5 mm. Eight weeks post-operation, X-ray examination, micro-computerized tomography and histological and histomorphological analysis were used to evaluate the bone healing effects. RESULTS: Alkaline phosphatase staining and mineralized nodules formation were more pronounced in AdBMP-2 group 14 days after gene transduction when compared with that of AdEGFP or untransduced group. The mRNA expression of osteopontin and osteocalcin also significantly increased 9 days after AdBMP-2 gene transduction. Mandibular defects were successfully repaired with AdBMP-2-transduced bMSCs ⁄ b-TCP constructs. The percentage of new bone formation in AdBMP-2 group was significantly higher than that of other control groups. CONCLUSIONS: Bone morphogenic protein-2 regional gene therapy together with b-TCP scaffold could be used to promote mandibular repairing and bone regeneration. Oral Diseases (2010) 16, 46-54
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.