Although previous studies suggest that myeloid zinc-finger 1 (MZF-1) is a multifaceted transcription factor that may function as either an oncogene or a tumor suppressor, the molecular bases determining its different traits remain elusive. Increasing evidence suggests that disorders in iron metabolism affect tumorigenesis and tumor behaviors, and that excess tumor iron stimulates tumor progression through various mechanisms such as enhancing DNA replication and energy metabolism. Ferroportin (FPN) is the only known iron exporter in mammalian cells, and it determines global iron egress out of cells. FPN reduction leads to decreased iron efflux and increased intracellular iron that consequentially aggravates the oncogenic effects of iron. MZF-1 was recently identified as a transcription factor that regulates FPN expression. Thus far, however, the molecular mechanisms underlying the MZF-1-FPN signaling in cancers are largely unknown. Here, we found a significant reduction of FPN levels in prostate tumors relative to adjacent tissues, and demonstrated a crucial role of FPN in tumor growth through controlling tumor iron concentration. Inhibition of MZF-1 expression led to reduced FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, increase of MZF-1 expression restrained tumor cell growth by promoting FPN-driven iron egress. Importantly, we demonstrated that AP4 and c-Myb jointly modulated MZF-1 transcription, and that miR-492 was also directly involved in regulating MZF-1 concentration through binding to the 3' untranslated regions of its mRNA. These results correlate with reduced AP4 and c-Myb expression and elevated miR-492 expression found in prostate tumors as compared with adjacent tissues that resulted in diminished MZF-1 and FPN. Moreover, we demonstrated that alterations of AP4, c-Myb and miR-492 levels significantly affected tumor cell growth. Targeting molecules within the MZF-1-FPN signaling thus appears to be a promising approach to restrain prostate cancer.
Rho-associated kinase (ROCK) has an essential role in governing cell morphology and motility, and increased ROCK activity contributes to cancer cell invasion and metastasis. Burgeoning data suggest that ROCK is also involved in the growth regulation of tumor cells. However, thus far, the molecular mechanisms responsible for ROCK-governed tumor cell growth have not been clearly elucidated. Here we showed that inhibition of ROCK kinase activity, either by a selective ROCK inhibitor Y27632 or by specific ROCK small interfering RNA (siRNA) molecules, attenuated not only motility but also the proliferation of PC3 prostate cancer cells in vitro and in vivo. Importantly, mechanistic investigation revealed that ROCK endowed cancer cells with tumorigenic capability, mainly by targeting c-Myc. ROCK could increase the transcriptional activity of c-Myc by promoting c-Myc protein stability, and ROCK inhibition reduced c-Myc-mediated expression of mRNA targets (such as HSPC111) and microRNA targets (such as miR-17-92 cluster). We provided evidence demonstrating that ROCK1 directly interacted with and phosphorylated c-Myc, resulting in stabilization of the protein and activation of its transcriptional activity. Suppression of ROCK-c-Myc downstream molecules, such as c-Myc-regulated miR-17, also impaired tumor cell growth in vitro and in vivo. In addition, c-Myc was shown to exert a positive feedback regulation on ROCK by increasing RhoA mRNA expression. Therefore, inhibition of ROCK and its stimulated signaling might prove to be a promising strategy for restraining tumor progression in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.