We report on high-power operation of a fiber distributed-feedback (DFB) laser fabricated from Tm-doped photosensitive alumino-silicate fiber and in-band pumped by an Er/Yb fiber laser at 1565 nm. The fiber DFB laser yielded up to 875 mW of single-ended output at 1943 nm on two orthogonally polarized modes for 3.5 W of absorbed pump power. Further scaling of the DFB laser output power was achieved with the aid of a simple Tm-doped fiber amplifier stage spliced directly to the DFB fiber without the need of an optical isolator. The maximum output power from the DFB laser and fiber amplifier was >3 W for a combined absorbed pump power of 8.1 W. The influence of thermal loading, owing to quantum defect heating in the Tm-doped core, on the output power and longitudinal mode behavior is discussed, and the prospects for further improvement in performance are considered.
A narrow-linewidth mid-IR source based on difference-frequency generation of an amplified 1.5 microm diode laser and a cw Tm-doped fiber laser in orientation-patterned (OP) GaAs has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 7.6-8.2 microm range with an output power of 0.5 mW. The measured characteristics of the OP-GaAs sample demonstrate a high quality of the material.
An experimental study of thick film strain sensitive resistors as typically employed in resistive bridge interface circuits has been undertaken. It has been found that the chosen aspect ratio (length to width ratio) of these screen printed and fired thick film resistors has a significant effect on both the temperature coefficient of resistance and the low frequency noise characteristics of the devices. This sensitivity to aspect ratio has been attributed to metal end contact migration in the devices during firing and hence a relationship between the sensitivity and the choice of end contact material and the firing regime employed in device fabrication has also been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.