Most cells possess mechanisms that are able to detect cellular volume shifts and to signal the initiation of appropriate volume regulatory responses. However, the identity and characteristics of the detecting mechanism remain obscure. In this study, we explored the influence of hypertonic and hypotonic challenges of varying magnitude on the characteristics of the ensuing regulatory volume increase (RVI) and regulatory volume decrease (RVD) of cultured bovine corneal endothelial cells (CBCECs). The main question we asked was whether a threshold of stimulation existed that would unleash a regulatory response. CBCECs (passage 1-3) were seeded on rectangular glass coverslips and grown for 1-2 days. We used a procedure based on detection of light scattering to monitor the transient volume changes of such plated cells when subjected to osmotic challenge. The osmometric responses were asymmetric: cells shrank faster than they swelled (by a factor of 3). Complete volume regulatory responses took 10-12 min. Bumetanide (50 microM) resulted in incomplete (50%) RVI. We found no threshold as the cells examined responded to hypertonic and hypotonic stimuli as low as 1%. There was some gradation as stimuli of <4% resulted in incomplete volume regulation. The degree of activation of the volume responses grew as an exponential buildup with the strength of the anisotonic challenge. We discuss how our observations are consistent with volume sensing mechanisms based on both ionic strength and the cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.