Consumption of edible insects is an indigenous practice that has played an essential role in human nutrition across Africa. The traditional use of insects forms an important part of food culture in Africa, and insects are consumed either as a delicacy, emergency, or staple source of food. However, indigenous knowledge about insect consumption is being lost because recent generations have adopted western methods and paid less attention to traditional practices. We conducted 500 questionnaires in five local municipalities in Kwazulu-Natal (KZN), and 122 questionnaires in four local municipalities in Vhembe district in Limpopo, South Africa, to document indigenous knowledge about edible insects’ consumption, collection, and preparation methods used in Limpopo and KZN. Eight insect species belonging to five insect orders were used as food in Limpopo and KZN, with mopane worms (94%) and termites (70%) being the most preferred species by respondents in Limpopo and KZN, respectively. Ninety-five percent of the respondents occasionally consumed insects in Limpopo, while only 28% did so in KZN. Nutritional benefits and tradition were the main reasons for consuming insects. Edible insects are a nutritious diet and play an important role in people’s livelihoods in rural areas. However, there was a notable decline in entomophagy, particularly in KZN. The decline may be related to occidental acculturation, discomfort associated with eating insects, and declining insect availability. To promote entomophagy, the authorities should encourage people to include edible insects in their diets because of their nutritional value. In addition, edible insect flour should be incorporated in food products such as biscuits, bread, energy bars, cereal, and cookies to promote acceptability.
Edible insects are an important protein rich natural resource that can contribute to resilient food security. Edible insects not only play an important role in traditional diets, but are also an excellent source of protein in traditional dishes in Africa. We systematically searched Web-of-Science and Google Scholar from year 2000–2019 for studies on the consumption of insects and their nutritional composition in Africa, resulting in 98 eligible papers, listing 212 edible insect species from eight orders. These insects were rich in protein, fats, and fibre. The highest protein content was reported for Lepidoptera (range: 20–80%). Coleoptera had the highest carbohydrate content (7–54%), while Lepidoptera had the highest fat content (10–50%). Considering the excellent source of nutrition, and potential socio-economic benefits, from edible insects, they can contribute strongly to improved food security, and rural development in developing countries. In addition, edible insects can be used as a sustainable food source to combat food shortages in the future, for example, providing resilience during times of drought or other climate stressors.
Edible insects may be a sustainable source of protein and some other nutrients, especially for low economic status communities. The current study determined the influence of insect type, geographic location and cooking method on the nutritional composition of insects. The investigation would contribute to maximal derivation of the nutritional benefits of insects. Dried samples of four insect types, Gonimbrasia belina (mopani worm), Gynanisa caterpillar, termite soldiers/workers, and termite alates, were procured from different street vendors across Vhembe district in Limpopo Province, South Africa. G. belina samples were cooked by frying, boiling with and without salt addition. Generally, nutrient content varied significantly with insect type and geographic location (P<0.05). Protein content varied from 40 g/100 g in termite alates to 69.75 g/100 g in termite soldiers/workers. Termite soldiers/workers had the highest iron content (range: 545-629.5 mg/kg), whilst Gynanisa caterpillar had the highest zinc content (range: 122.14-150.33 mg/kg). Similarly, Gynanisa caterpillar had the highest levels of lysine (range: 0.80-4.53 g/100 g), threonine (range: 0.79-2.64 g/100 g) and isoleucine (range: 0.63-2.33). On the other hand termite soldiers/workers had the highest levels of valine (range: 2.20-3.47 g/100 g), leucine (range: 2.49-3.87 g/100 g) and phenylalanine (range: 1.38-3.55 g/100 g). Cooking method significantly affected nutrient retention. Boiling with salt added resulted in the highest retention of protein and total mineral content (ash), and, therefore, seems a suitable method for cooking insects. The findings indicate that, if optimally selected and cooked, edible insects can contribute significantly to the alleviation of protein, zinc, and iron deficiencies in target communities.
Ants are sensitive to habitat change and may be affected by disturbances, such as alien plant invasion. Alien plant invasion is associated with negative effects on the functioning of ecosystems and may have adverse impacts on biodiversity. The aim of this study was to determine the diversity of ground‐dwelling ants in Tanglewood and Giba Gorge Reserves in KwaZulu‐Natal Province, South Africa. Ants were sampled in the wet and dry seasons. Pitfall trap sampling was carried out in an intact grassland, forest and a disturbed grassland. We collected 360 samples resulting in a total of 2,577 occurrences comprising of 54 species. We found that diversity of ants in the two sites was influenced by vegetation type. The intact grassland in the two reserves had greater diversity (40 ± 4.45) of ants compared with forest (22 ± 4.86) and disturbed grassland (27 ± 1.15); however, the disturbed grassland supported higher ant occurrences (50.03 ± 31.6). Opportunists represented the most diverse functional group with 17 species followed by specialist predators with 13 species and generalised Myrmicinae with 10 species. These results suggest that grassland disturbance by alien plant invasion provides suitable environmental conditions that may increase ant occurrences but decrease ant diversity.
Edible insects are an important natural commodity in rural areas that is used for household consumption and to generate income through trade. As a result, edible-insect trading is a profitable business that provides employment and improves the livelihoods of impoverished rural people. This study aimed at determining the socioeconomic benefits of and reasons for trading insects, and to assess if edible insects are included in economic development strategies in the Vhembe district of Limpopo province, South Africa. We conducted 72 questionnaire interviews targeting traders in 5 towns across the district. Five insect groups belonging to four insect orders are traded in informal markets of the district. Mopane worms (Gonimbrasia belina) were the most traded (42%) edible insects. Unemployment (45%) and the demand for edible insects (34%) were the major reasons for trading insects. Insect trading has numerous benefits; however, the provision of income (60%) and financial support (35%) were stated as the primary benefits. Despite several benefits associated with trading in insects, there are many challenges such as insect spoilage and a decline in the availability of edible insects in the wild. Edible insects play an important role in food security and the rural economy by generating employment opportunities for unemployed traders. Trading in insects is a traditional practice based on indigenous knowledge, which has persisted as an economic practice that improves rural livelihoods by reducing poverty and increases the human dignity of rural citizens. Only four governmental organisations in Limpopo included edible insects in economic development strategies. Trading insects is primarily an informal activity. The government could stimulate the activity and broaden and deepen the community benefits by providing infrastructure, access to harvest areas, financial support, and business training as part of a rural empowerment strategy to end hunger and poverty while creating employment opportunities in rural areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.