Conjugate gradient (CG) method is an interesting tool to solve optimization problems in many fields, such as design, economics, physics, and engineering. In this paper, we depict a new hybrid of CG method which relates to the famous Polak-Ribière-Polyak (PRP) formula. It reveals a solution for the PRP case which is not globally convergent with the strong Wolfe-Powell (SWP) line search. The new formula possesses the sufficient descent condition and the global convergent properties. In addition, we further explained about the cases where PRP method failed with SWP line search. Furthermore, we provide numerical computations for the new hybrid CG method which is almost better than other related PRP formulas in both the number of iterations and the CPU time under some standard test functions.
The conjugate gradient (CG) method is one of the most popular methods to solve nonlinear unconstrained optimization problems. The Hestenes-Stiefel (HS) CG formula is considered one of the most efficient methods developed in this century. In addition, the HS coefficient is related to the conjugacy condition regardless of the line search method used. However, the HS parameter may not satisfy the global convergence properties of the CG method with the Wolfe-Powell line search if the descent condition is not satisfied. In this paper, we use the original HS CG formula with a mild condition to construct a CG method with restart using the negative gradient. The convergence and descent properties with the strong Wolfe-Powell (SWP) and weak Wolfe-Powell (WWP) line searches are established. Using this condition, we guarantee that the HS formula is non-negative, its value is restricted, and the number of restarts is not too high. Numerical computations with the SWP line search and some standard optimization problems demonstrate the robustness and efficiency of the new version of the CG parameter in comparison with the latest and classical CG formulas. An example is used to describe the benefit of using different initial points to obtain different solutions for multimodal optimization functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.