UV-C and HO either alone or in combination are promising techniques to preserve the quality of pomegranate arils for up to 14 days at 5 °C.
BACKGROUND Selenium (Se) is an essential micronutrient due to its anticarsinogenic properties and positive influence on human immune system. Fortification of some fruits based on their rates of consumption and availability all year round appears to be an effective way to supplement Se in the human diet. In this study the possibility of augmenting Se content in ‘Starking Delicious’ apple fruit during two growing seasons was investigated. In 2016, the impact of 0, 0.5, 1 and 1.5 mg Se L−1 by foliar application on Se accumulation and fruit ripening as well as quality attributes was investigated. In 2017, the effects of 1.5 mg Se L−1 foliar application on fruit Se content and changes in the antioxidant system and storability were studied with a 30‐day interval during 6 months storage at 0 ± 1 °C. RESULTS Foliar application of Se significantly increased both leaf and fruit Se concentration. The increase in Se content enhanced the flesh firmness, titrable acidity, and soluble solid content of the fruit. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were markedly amplified by Se treatments as compared to the control, resulting in lower superoxide anion radical (O2−•) and hydrogen peroxide (H2O2) contents, correspondingly higher membrane integrity as revealed by lower ion leakage and malondialdehyde accumulation and the fruit with lower water core. CONCLUSION Application of Se was efficient in increasing fruit Se content and nutraceutical properties, retarding the flesh firmness reduction, and postponing fruit ripening resulting from lower ethylene biosynthesis rate, thereby positively affecting apple fruit quality and storability. © 2019 Society of Chemical Industry
Background Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m− 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. Results Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m− 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. Conclusions The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth’s surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Background Rosa damascena is an aromatic rose species, which is cultivated for its essential oil, and is widely used in perfume, cosmetic, pharmaceutical, and food industries in the world. This experiment was conducted to evaluate essential oil and morphological variations of 26 Damask rose genotypes. For this purpose, the effect of harvest time, i.e., early morning or evening, and sampling type, i.e., fresh or dried petals, on oil content was evaluated. In addition, the composition of essential oil of the genotypes was determined using gas chromatography–mass spectrometry (GC–MS). Results Results showed that early morning was the preferable time for flower collection based on oil content. Furthermore, the oil yield of fresh petals was higher than that of the dried petals. Twenty-five volatile compounds were found in the extracted oils. β-Damascenone, a key marker for the quality of rose oil, was found in 22 genotypes and was more than 1.5% concentration in G3, G6, and G11 genotypes. The highest components of the oil of Damask rose genotypes were nonadecane (42.51%), β-citronellol (40.82%), n-heneicosane (34.69%), geraniol (27.76%), and n-tricosane (14.2%). A wide variation in flower characteristics, such as petal color (from white to nearly red) and petal numbers from about 25 to 95, were also recorded. The G2, G5, and G15 genotypes, originated from Isfahan, Fars, and Kerman, respectively, were selected based on petal number, flower weight, and essential oil content in fresh and dried petals. Conclusions Results suggest that morphological and biochemical diversity of Damask rose genotypes can be used effectively to characterize genetic diversity between different genotypes and to select special traits in breeding programs. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.