Abstract. Rockfall is a complex natural process that can present risks to the effective operation of infrastructure in mountainous terrain. Remote sensing tools and techniques are rapidly becoming the state of the practice in the characterization, monitoring and management of these geohazards. The aim of this study is to address the methods and implications of how the dimensions of three-dimensional rockfall objects, derived from sequential terrestrial laser scans (TLSs), are measured. Previous approaches are reviewed, and two new methods are introduced in an attempt to standardize the process. The approaches are applied to a set of synthetic rockfall objects generated in the open-source software package Blender. Fifty rockfall events derived from sequential TLS monitoring in the White Canyon, British Columbia, Canada, are used to demonstrate the application of the proposed algorithms. This study illustrates that the method used to calculate the rockfall dimensions has a significant impact on how the shape of a rockfall object is classified. This has implications for rockfall modelling as the block shape is known to influence rockfall runout.
Abstract. Remote sensing techniques can be used to gain a more detailed understanding of hazardous rock slopes along railway corridors that would otherwise be inaccessible. Multiple datasets can be used to identify changes over time, creating an inventory of events to produce magnitude–frequency relationships for rockfalls sourced on the slope. This study presents a method for using the remotely sensed data to develop inputs to rockfall simulations, including rockfall source locations and slope material parameters, which can be used to determine the likelihood of a rockfall impacting the railway tracks given its source zone location and volume. The results of the simulations can be related to the rockfall inventory to develop modified magnitude–frequency curves presenting a more realistic estimate of the hazard. These methods were developed using the RockyFor3D software and lidar and photogrammetry data collected over several years at White Canyon, British Columbia, Canada, where the Canadian National (CN) Rail main line runs along the base of the slope. Rockfalls sourced closer to the tracks were more likely to be deposited on the track or in the ditch, and of these, rockfalls between 0.1 and 10 m3 were the most likely to be deposited. Smaller blocks did not travel far enough to reach the bottom of the slope and larger blocks were deposited past the tracks. Applying the results of the simulations to a database of over 2000 rockfall events, a modified magnitude–frequency can be created, allowing the frequency of rockfalls deposited on the railway tracks or in ditches to be determined. Suggestions are made for future development of the methods including refinement of input parameters and extension to other modelling packages.
Abstract. Rockfall presents an ongoing challenge to the safe operation of transportation infrastructure, creating hazardous conditions which can result in damage to roads and railways, as well as loss of life. Rockfall risk assessment frameworks often involve the determination of rockfall runout in an attempt to understand the likelihood that rockfall debris will reach an element at risk. Rockfall modelling programs which simulate the trajectory of rockfall material are one method commonly used to assess potential runout. This study aims to demonstrate the effectiveness of a rockfall simulation prototype which uses the Unity 3D game engine. The technique is capable of simulating rockfall events comprised of many mobile fragments, a limitation of many industry standard rockfall modelling programs. Five fragmental rockfalls were simulated using the technique, with slope and rockfall geometries constructed from high-resolution terrestrial laser scans. Simulated change detection was produced for each of the events and compared to the actual change detection results for each rockfall as a basis for testing model performance. In each case the simulated change detection results aligned well with the actual observed change in terms of location and magnitude. An example of how the technique could be used to support the design of rockfall catchment ditches is shown. Suggestions are made for future development of the simulation technique with a focus on better informing simulated rockfall fragment size and the timing of fragmentation.
Abstract. Rockfall is a complex natural process that can present risks to the effective operation of infrastructure in mountainous terrain. Remote sensing tool and techniques are rapidly becoming the state of practice in the characterization, monitoring and management of these geohazards. The aim of this study is to address the methods and implications of how the dimensions of 3-dimensional rockfall objects, derived from sequential terrestrial laser scans (TLS), are measured. Previous approaches are reviewed, and two novel algorithms are introduced in an attempt to standardize the process. The approaches are applied to a set of synthetic rockfall objects generated in the open-source software package Blender. In addition, a database of close to 5000 rockfalls is presented derived from sequential TLS monitoring in the White Canyon, British Columbia, Canada. This study illustrates that the method in which the rockfall's dimensions are calculated has a significant impact on how the shape of a rockfall object is classified. This has implications for rockfall modelling as the block shape is known to influence rockfall runout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.