Background Ebola vaccine development was accelerated in response to the 2014 Ebola virus infection outbreak. This phase 1 study (VAC52150EBL1004) assessed safety, tolerability, and immunogenicity of heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimens in the Lake Victoria Basin of Tanzania and Uganda in mid-level altitude, malaria-endemic settings. Methods Healthy volunteers aged 18–50 years from Tanzania (n = 25) and Uganda (n = 47) were randomized to receive placebo or active vaccination with Ad26.ZEBOV or MVA-BN-Filo (first vaccination), followed by MVA-BN-Filo or Ad26.ZEBOV (second vaccination) dose 2, respectively, with intervals of 28 or 56 days. Results Seventy-two adults were randomized to receive vaccine (n = 60) or placebo (n = 12). No vaccine-related serious adverse events were reported. The most frequent solicited local and systemic adverse events were injection site pain (frequency, 70%, 66%, and 42% per dose for MVA-BN-Filo, Ad26.ZEBOV, and placebo, respectively) and headache (57%, 56%, and 46%, respectively). Adverse event patterns were similar among regimens. Twenty-one days after dose 2, 100% of volunteers demonstrated binding antibody responses against Ebola virus glycoprotein, and 87%–100% demonstrated neutralizing antibody responses. Ad26.ZEBOV dose 1 vaccination induced more-robust initial binding antibody and cellular responses than MVA-BN-Filo dose 1 vaccination. Conclusions Heterologous 2-dose vaccination with Ad26.ZEBOV and MVA-BN-Filo against Ebola virus is well tolerated and immunogenic in healthy volunteers. Clinical trials registration NCT02376400.
Background We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. Methods and findings In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d’Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant’s last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. Conclusions Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. Trial registration ClinicalTrials.gov NCT02564523
Background Reoccurring Ebola outbreaks in West and Central Africa have led to serious illness and death in thousands of adults and children. The objective of this study was to assess safety, tolerability, and immunogenicity of the heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimen in adolescents and children in Africa. Methods and findings In this multicentre, randomised, observer-blind, placebo-controlled Phase II study, 131 adolescents (12 to 17 years old) and 132 children (4 to 11 years old) were enrolled from Eastern and Western Africa and randomised 5:1 to receive study vaccines or placebo. Vaccine groups received intramuscular injections of Ad26.ZEBOV (5 × 1010 viral particles) and MVA-BN-Filo (1 × 108 infectious units) 28 or 56 days apart; placebo recipients received saline. Primary outcomes were safety and tolerability. Solicited adverse events (AEs) were recorded until 7 days after each vaccination and serious AEs (SAEs) throughout the study. Secondary and exploratory outcomes were humoral immune responses (binding and neutralising Ebola virus [EBOV] glycoprotein [GP]-specific antibodies), up to 1 year after the first dose. Enrolment began on February 26, 2016, and the date of last participant last visit was November 28, 2018. Of the 263 participants enrolled, 217 (109 adolescents, 108 children) received the 2-dose regimen, and 43 (20 adolescents, 23 children) received 2 placebo doses. Median age was 14.0 (range 11 to 17) and 7.0 (range 4 to 11) years for adolescents and children, respectively. Fifty-four percent of the adolescents and 51% of the children were male. All participants were Africans, and, although there was a slight male preponderance overall, the groups were well balanced. No vaccine-related SAEs were reported; solicited AEs were mostly mild/moderate. Twenty-one days post-MVA-BN-Filo vaccination, binding antibody responses against EBOV GP were observed in 100% of vaccinees (106 adolescents, 104 children). Geometric mean concentrations tended to be higher after the 56-day interval (adolescents 13,532 ELISA units [EU]/mL, children 17,388 EU/mL) than the 28-day interval (adolescents 6,993 EU/mL, children 8,007 EU/mL). Humoral responses persisted at least up to Day 365. A limitation of the study is that the follow-up period was limited to 365 days for the majority of the participants, and so it was not possible to determine whether immune responses persisted beyond this time period. Additionally, formal statistical comparisons were not preplanned but were only performed post hoc. Conclusions The heterologous 2-dose vaccination was well tolerated in African adolescents and children with no vaccine-related SAEs. All vaccinees displayed anti-EBOV GP antibodies after the 2-dose regimen, with higher responses in the 56-day interval groups. The frequency of pyrexia after vaccine or placebo was higher in children than in adolescents. These data supported the prophylactic indication against EBOV disease in a paediatric population, as licenced in the EU. Trial registration ClinicalTrials.gov NCT02564523.
Background Rift Valley fever (RVF) is an emerging, neglected, mosquito-borne viral zoonosis associated with significant morbidity, mortality and expanding geographical scope. The clinical signs and symptoms in humans are non-specific and case definitions vary. We reviewed and analysed the clinical manifestations of RVF in humans. Methods In this systematic review and meta-analysis we searched on different dates, the Embase (from 1947 to 13th October 2019), Medline (1946 to 14th October 2019), Global Health (1910 to 15th October 2019), and Web of Science (1970 to 15th October 2019) databases. Studies published in English, reporting frequency of symptoms in humans, and laboratory confirmed RVF were included. Animal studies, studies among asymptomatic volunteers, and single case reports for which a proportion could not be estimated, were excluded. Quality assessment was done using a modified Hoy and Brooks et al tool, data was extracted, and pooled frequency estimates calculated using random effects meta-analysis. Results Of the 3765 articles retrieved, less than 1% (32 articles) were included in the systematic review and meta-analysis. Nine RVF clinical syndromes were reported including the general febrile, renal, gastrointestinal, hepatic, haemorrhagic, visual, neurological, cardio-pulmonary, and obstetric syndromes. The most common clinical manifestations included fever (81%; 95% Confidence Interval (CI) 69–91; [26 studies, 1286 patients]), renal failure (41%; 23–59; [4, 327]), nausea (38%; 12–67; [6, 325]), jaundice (26%; 16–36; [15, 393]), haemorrhagic disease (26%; 17–36; [16, 277]), partial blindness (24%; 7–45; [11, 225]), encephalitis (21%; 11–33; [4, 327]), cough (4%; 0–17; [4, 11]), and miscarriage (54%) respectively. Death occurred in 21% (95% CI 14–29; [16 studies, 328 patients]) of cases, most of whom were hospitalised. Discussion This study delineates the complex symptomatology of human RVF disease into syndromes. This approach is likely to improve case definitions and detection rates, impact outbreak control, increase public awareness about RVF, and subsequently inform ‘one-health’ policies. This study provides a pooled estimate of the proportion of RVF clinical manifestations alongside a narrative description of clinical syndromes. However, most studies reviewed were case series with small sample sizes and enrolled mostly in-patients and out-patients, and captured symptoms either sparsely or using broad category terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.