Synthesis of bimetallic nanoparticles has employed many applications especially as larvicidal agents, these bimetallic nanoparticles therefore need to be produced via a cost-effective and eco-friendly route. Here, green synthesis of Ag-Co hybrid nanoparticles obtained from aqueous root extract of palmyra palm was reported. The hybrid nanoparticles formation was noticed by a colour change from light pink to light brown and further studied using UV-Vis and FT-IR spectrophotometers. The maximum absorption wavelength, λ max as determined by the UV-Visible Spectrophotometer was found to be 420 nm. The FT-IR showed the formation and stabilization of the BMNPs. The nanolarvicidal potency was evaluated by the application of varying concentration ranging from 5 to 50 mg/L against first to fourth instars of larvae and recording the percentage mortality after 24 hours. Probit analysis showed the LC 50 and LC 90 for 1 st instar to be 5.237 mg/L and 49.240 mg/L, 9.310 mg/L and 94.969 mg/L for 2 nd instar, 13.626 mg/L and 105.542 mg/L for 3 rd /4 th instars respectively. This result therefore suggests that the nanoparticles can be used as potential control for larval population growth.
Equilibrium sorption of the Thermally Treated Rice Husk (TTRH) for Sulfamethazine (SMT) adsorption was studied. The Physico-chemical properties of the modified rice husk were determined. The equilibrium sorption data were fitted into Langmuir, Freundlich and Dubinin–Radushkevich isotherms. Of the three adsorption isotherm, the R2 value of Langmuir isotherm model was the highest. Also compared to other isotherms the AARE coefficient for the Langmuir isotherm is low, which indicates favorable sorption. The maximum monolayer coverage (qm) from Langmuir isotherm model was determined to be 19.11 mg/g, the separation factor indicating a favorable sorption experiment is 0.446. Also from Freundlich Isotherm model, the sorption intensity (n) which indicates favorable sorption and the correlation value are 1.84 and 3.79 respectively. The mean free energy was estimated from Dubinin–Radushkevich isotherm model to be 9.18 KJ/mol which clearly proved that the adsorption experiment followed a physical process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.