Little is known of the age-dependent and long-term consequences of low exposure levels of the herbicide and dopaminergic toxicant, paraquat. Thus, we assessed the dose-dependent effects of paraquat using a typical short-term (3 week) exposure procedure, followed by an assessment of the effects of chronic (16 weeks) exposure to a very low dose (1/10th of what previously induced dopaminergic neuronal damage). Short term paraquat treatment dose-dependently induced deficits in locomotion, sucrose preference and Y-maze performance. Chronic low dose paraquat treatment had a very different pattern of effects that were also dependent upon the age of the animal: in direct contrast to the short-term effects, chronic low dose paraquat increased sucrose consumption and reduced forced swim test (FST) immobility. Yet these effects were age-dependent, only emerging in mice older than 13 months. Likewise, Y-maze spontaneous alternations and home cage activity were dramatically altered as a function of age and paraquat chronicity. In both the short and long-term exposure studies, increased corticosterone and altered hippocampal glucocorticoid receptor (GR) levels were induced by paraquat, but surprisingly these effects were blunted in the older mice. Thus, paraquat clearly acts as a systemic stressor in terms of corticoid signaling and behavioral outcomes, but that paradoxical effects may occur with: (a) repeated exposure at; (b) very low doses; and (c) older age. Collectively, these data raise the possibility that repeated “hits” with low doses of paraquat in combination with aging processes might have promoted compensatory outcomes.
Background Leucine-rich repeat kinase 2 (LRRK2) is a common gene implicated in Parkinson’s disease (PD) and is also thought to be fundamentally involved in numerous immune functions. Thus, we assessed the role of LRRK2 in the context of the effects of the environmental toxicant, paraquat, that has been implicated in PD and is known to affect inflammatory processes. Methods Male LRRK2 knockout (KO) and transgenic mice bearing the G2019S LRRK2 mutation (aged 6–8 months) or their littermate controls were exposed to paraquat (two times per week for 3 weeks), and sickness measures, motivational scores, and total home-cage activity levels were assessed. Following sacrifice, western blot and ELISA assays were performed to see whether or not LRRK2 expression would alter processes related to plasticity, immune response processes, or the stress response. Results Paraquat-induced signs of sickness, inflammation (elevated IL-6), and peripheral toxicity (e.g., organ weight) were completely prevented by LRRK2 knockout. In fact, LRRK2 knockout dramatically reduced not only signs of illness, but also the motivational (nest building) and home-cage activity deficits induced by paraquat. Although LRRK2 deficiency did not affect the striatal BDNF reduction that was provoked by paraquat, it did blunt the corticosterone elevation induced by paraquat, raising the possibility that LRRK2 may modulate aspects of the HPA stress axis. Accordingly, we found that transgenic mice bearing the G2019S LRRK2 mutation had elevated basal corticosterone, along with diminished hippocampal 5-HT1A levels. Conclusion We are the first to show the importance of LRRK2 in the peripheral neurotoxic and stressor-like effects of paraquat. These data are consistent with LRRK2 playing a role in the general inflammatory tone and stressor effects induced by environmental toxicant exposure.
Background Recent work has established that Parkinson’s disease (PD) patients have an altered gut microbiome, along with signs of intestinal inflammation. This could help explain the high degree of gastric disturbances in PD patients, as well as potentially be linked to the migration of peripheral inflammatory factors into the brain. To our knowledge, this is the first study to examine microbiome alteration prior to the induction of a PD murine model. Methods We presently assessed whether pre-treatment with the probiotic, VSL #3, or the inflammatory inducer, dextran sodium sulphate (DSS), would influence the PD-like pathology provoked by a dual hit toxin model using lipopolysaccharide (LPS) and paraquat exposure. Results While VSL #3 has been reported to have anti-inflammatory effects, DSS is often used as a model of colitis because of the gut inflammation and the breach of the intestinal barrier that it induces. We found that VSL#3 did not have any significant effects (beyond a blunting of LPS paraquat-induced weight loss). However, the DSS treatment caused marked changes in the gut microbiome and was also associated with augmented behavioral and inflammatory outcomes. In fact, DSS markedly increased taxa belonging to the Bacteroidaceae and Porphyromonadaceae families but reduced those from Rikencellaceae and S24-7, as well as provoking colonic pro-inflammatory cytokine expression, consistent with an inflamed gut. The DSS also increased the impact of LPS plus paraquat upon microglial morphology, along with circulating lipocalin-2 (neutrophil marker) and IL-6. Yet, neither DSS nor VSL#3 influenced the loss of substantia nigra dopamine neurons or the astrocytic and cytoskeleton remodeling protein changes that were provoked by the LPS followed by paraquat treatment. Conclusions These data suggest that disruption of the intestinal integrity and the associated microbiome can interact with systemic inflammatory events to promote widespread brain-gut changes that could be relevant for PD and at the very least, suggestive of novel neuro-immune communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.