It follows by Bixby's Lemma that if $e$ is an element of a $3$-connected matroid $M$, then either $\textrm{co}(M\backslash e)$, the cosimplification of $M\backslash e$, or $\textrm{si}(M/e)$, the simplification of $M/e$, is $3$-connected. A natural question to ask is whether $M$ has an element $e$ such that both $\textrm{co}(M\backslash e)$ and $\textrm{si}(M/e)$ are $3$-connected. Calling such an element "elastic", in this paper we show that if $|E(M)|\ge 4$, then $M$ has at least four elastic elements provided $M$ has no $4$-element fans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.