This study explored the feasibility of using torrefied biomass as a reinforcing filler in natural rubber compounds. Carbon black was then replaced with the torrefied biomass in elastomer formulations for concentrations varying from 0% to 100% (60 parts per hundred rubber or phr total). Their influence on the curing process, dynamic properties, and mechanical properties was investigated. Results were compared with the properties of vulcanizates containing solely carbon black fillers. Time to cure (t90) for compounds with torrefied biomass fillers increased, while filler‐filler interactions (ΔG') decreased, compared to carbon black controls. At low strains, the tan δ values of the torrefied fillers vulcanizates were similar to the controls. Incorporation of torrefied biomass into natural rubber decreased compound tensile strength and modulus but increased elongation. Replacement with torrefied fillers resulted in a weaker filler network in the matrix. Still, results showed that moderate substitution concentrations (~20 phr) could be feasible for some natural rubber applications.
In this study, the enhancement of the biodegradation rate of polylactic acid (PLA) filled with commercially available soil amendment product (NTM) or a nanoclay (Cloisite 25A) were evaluated. Cloisite 25A and NTM were incorporated into PLA at 5, 10, 20 (w/w) through melt blending. Transmission electron micrographs revealed particles with a wide range of sizes that were formed by clumping of many smaller particles. The particles showed good dispersion in PLA by scanning electron microscopy. Under standard composting conditions using a standard technique for aerobic biodegradation of plastic materials, it was shown that the addition of NTM enhanced the biodegradation rate of PLA composites by 3-to 4-fold compared to neat PLA. Linear kinetics were used to obtain induction periods, half-lives, and rates of mineralization. Finally, mechanical and thermomechanical properties of these blends were compared with PLA. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. J. Appl. Polym. Sci. 2020, 137, 48939.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.