Representative sandstone samples from Mesohellenic Trough (NW Greece) were selected to investigate the geochemical reactions that occur when they come in contact with CO 2 under representative in-situ conditions (T=70 o C, P=150bar, 6 months reaction in batch experiments). Those sandstones consisted of predominant calcite and quartz, with lesser amounts of feldspars, chlorite, ankerite, dolomite, kaolinite, montmorillonite and muscovite. After reaction with CO 2 , the brine became acidic and was enriched in cations as a result of mineral dissolution. Minor mineralogical changes were observed that involved: a) the dissolution of carbonate minerals and b) the incongruent dissolution of chlorite to form clays and silica. The results related to these, have been linked with geochemical modelling using the PHREEQC code. Simulation results for a 10 ka time period predicted that chlorite was expected to dissolve completely within 100 years, leading to boehmite growth and increasing the mass of dolomite. Feldspars were expected to react at a later stage in the reaction sequence. Sensitivity tests were run to access the effect of various adjustable parameters on the outcome results. The geochemical experiments and modelling lend support to the view that Pentalofos and Tsotyli sandstone formations of the Mesohellenic Trough are suitable for the long-term storage of CO 2 produced in the neighbouring lignite-fired power plants, at least in terms of mineralogy and geochemistry.
The retention mechanisms of metal ions during interaction of clay with metal-rich aqueous solutions is usually investigated by sorption isotherms. Although classical isotherm models may provide sufficient information about the characteristics of the solid–liquid system, they do not distinguish among the various retention mechanisms. This study presents a methodological approach of combining batch experiment data and geochemical modelling for the characterization of the interaction of Mg-Fe-rich clay materials with monometallic solutions of Pb and Cu. For this purpose, a palygorskite clay (PCM), an Fe-smectite clay (SCM) and a natural palygorskite-Fe-smectite mixed clay (MCM) were assessed for their effectiveness as metal ion sorbents. The sorption capacity of the materials follows the order MCM > SCM > PCM and ranges between 27.6–52.1 mg g–1 for Pb and 7.7–17.6 mg g–1 for Cu. Based on the experimental results that allowed the speciation calculations, fitting of sorption isotherms and the investigation of relationships between protons, Mg and the metals studied we suggest that a combination of sorption mechanisms occurs during the interaction of clay materials with metal solutions. These involve surface complexation, ion exchange and precipitation of solid compounds onto the solid surface. A three-term isotherm model was employed to quantify the role of each of the above mechanisms in the overall retention process. The superior performance of mixed clay among the materials tested is attributed to the synergetic effect of exchange in the interlayer and specific sorption on the clay edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.