Abstract. In Mod. Phys. Lett. A 9, 3119 (1994), one of us (R.D.S) investigated a formulation of quantum mechanics as a generalized measure theory. Quantum mechanics computes probabilities from the absolute squares of complex amplitudes, and the resulting interference violates the (Kolmogorov) sum rule expressing the additivity of probabilities of mutually exclusive events. However, there is a higher order sum rule that quantum mechanics does obey, involving the probabilities of three mutually exclusive possibilities. We could imagine a yet more general theory by assuming that it violates the next higher sum rule. In this paper, we report results from an ongoing experiment that sets out to test the validity of this second sum rule by measuring the interference patterns produced by three slits and all the possible combinations of those slits being open or closed. We use attenuated laser light combined with single photon counting to confirm the particle character of the measured light.
We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians non-linear in the generators of su(3) algebra. A simplest model of such non-linear evolution is analyzed in terms of semiclassical evolution of the SU (3) Wigner function.
Generalized quantum measurements (also known as positive operator-valued measures or POVMs) are of great importance in quantum information and quantum foundations, but often difficult to perform. We present an experimental approach which can in principle be used to perform arbitrary POVMs in a linear-optical context. One of the most interesting POVMs, the symmetric, informationally complete-POVM (or SIC-POVM), is the most compact set of measurements that can be used to fully describe a quantum state. We use our technique to carry out the first experimental characterization of the state of a qutrit using SIC-POVMs. Because of the highly symmetric nature of this measurement, such a representation has the unique property that it permits all other measurement outcomes to be predicted by a simple extension of the classical Bayesian sum rule, making no use of complex amplitudes or Hilbert-space operators. We demonstrate this approach on several qutrit states encoded in single photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.