Abstract-MapReduce is increasingly becoming a popular framework, and a potent programming model. The most popular open source implementation of MapReduce, Hadoop, is based on the Hadoop Distributed File System (HDFS). However, as HDFS is not POSIX compliant, it cannot be fully leveraged by applications running on a majority of existing HPC environments such as Teragrid and NERSC. These HPC environments typically support globally shared file systems such as NFS and GPFS. On such resourceful HPC infrastructures, the use of Hadoop not only creates compatibility issues, but also affects overall performance due to the added overhead of the HDFS. This paper not only presents a MapReduce implementation directly suitable for HPC environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPC environments, but also allows for better performance in such settings. This paper shows the applicability and high performance of the MapReduce paradigm through MARIANE, an implementation designed for clustered and shared-disk file systems and as such not dedicated to a specific MapReduce solution. The paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in distributed environments over Apache Hadoop in a data intensive setting, on the Magellan testbed at
Abstract-Since its inception, MapReduce has frequently been associated with Hadoop and large-scale datasets. Its deployment at Amazon in the cloud, and its applications at Yahoo! and Facebook for large-scale distributed document indexing and database building, among other tasks, have thrust MapReduce to the forefront of the data processing application domain. The applicability of the paradigm however extends far beyond its use with data intensive applications and diskbased systems, and can also be brought to bear in processing small but CPU intensive distributed applications. In this work, we focus both on the performance of processing large-scale hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in diskless, and memory resident I/O systems. In this paper, we present LEMO-MR (Low overhead, elastic, configurable for in-memory applications, and on-demand fault tolerance), an optimized implementation of MapReduce, for both on-disk and in-memory applications, describe its architecture and identify not only the necessary components of this model, but also trade offs and factors to be considered. We show the efficacy of our implementation in terms of potential speedup that can be achieved for representative data sets used by cloud applications. Finally, we quantify the performance gains exhibited by our MapReduce implementation over Apache Hadoop in a compute intensive environment.
Abstract-Since its introduction, MapReduce implementations have been primarily focused towards static compute cluster sizes. In this paper, we introduce the concept of dynamic elasticity to MapReduce. We present the design decisions and implementation tradeoffs for DELMA, (Dynamically ELastic MApReduce), a framework that follows the MapReduce paradigm, just like Hadoop MapReduce, but that is capable of growing and shrinking its cluster size, as jobs are underway. In our study, we test DELMA in diverse performance scenarios, ranging from diverse node additions to node additions at various points in the application run-time with various dataset sizes. The applicability of the MapReduce paradigm extends far beyond its use with large-scale data intensive applications, and can also be brought to bear in processing long running distributed applications executing on small-sized clusters. In this work, we focus both on the performance of processing hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in small clusters. We run experiments for datasets that require CPU intensive processing, ranging in size from millions of input data elements to process, up to over half a billion elements, and observe the positive scalability patterns exhibited by the system. We show that for such sizes, performance increases with data and cluster size increases. We conclude on the benefits of providing MapReduce with the capability of dynamically growing and shrinking its cluster configuration by adding and removing nodes during jobs, and explain the possibilities presented by this model.
Abstract-MapReduce has since its inception been steadily gaining ground in various scientific disciplines ranging from space exploration to protein folding. The model poses a challenge for a wide range of current and legacy scientific applications for addressing their "Big Data" challenges. For example: MapReduce's best known implementation, Apache Hadoop, only offers native support for Java applications. While Hadoop streaming supports applications compiled in a variety of languages such as C, C++, Python and FORTRAN, streaming has shown to be a less efficient MapReduce alternative in terms of performance, and effectiveness. Additionally, Hadoop streaming offers lesser options than its native counterpart, and as such offers less flexibility along with a limited array of features for scientific software. The Hadoop File System (HDFS), a central pillar of Apache Hadoop is not a POSIX compliant file system. In this paper, we present an alternative framework to Hadoop streaming to address the needs of scientific applications: MARISSA (MApReduce Implementation for Streaming Science Applications). We describe MARISSA's design and explain how it expands the scientific applications that can benefit from the MapReduce model. We also compare and explain the performance gains of MARISSA over Hadoop streaming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.