Hybrid systems consisting of a single or multiple renewable energy generators coupled with an environmentally-friendly storage system are used in renewable power production due to wide disparity between the intermittent power generated and the power demand. These systems also have the potential to provide 24/7 power without leaving a carbon footprint in operation. Finding the optimal size of a Hybrid Renewable Energy System (HRES) with no Loss of Power Supply (LPS) is of utmost concern when considering the Levelized Cost of Energy (LCE) of the system over its lifecycle. In this study, an optimization routine employing a search algorithm is developed to find the system configuration with a minimized LCE that meets also meets zero LPS. To this end, a system model is developed by integrating basic models of the subsystems. The system model is then used to investigate two different loading cases, 1) where the demand cannot be controlled as in the case of the power demand of a residential network, and 2) where the demand can be controlled up to certain limits, as in the case of the power demand of a data center or a data center network. Various types of controllable power demands (CoD) are studied. When compared to the power demand of a residential network, results demonstrate a significant reduction in the life cycle costs for CoD conditions.
Small villages in remote locations of developing countries rarely have access to electricity and are highly dependent on burning fossil fuels for energy. In an effort to provide these villages with a quality power supply and to replace their current emissions-producing energy generation, we propose a Hybrid Power System (HPS) that uses small wind turbines and solar panels for power generation. The system manages the intermittency of the renewable power by storing excess energy during periods of low user demand (such as night time) and releasing that energy at demand peaks (times when people are using demanding appliances). The proposed storage method uses electrolysis, which is the separation of water molecules into hydrogen and oxygen by excess DC currents produced by the wind and solar. The hydrogen is then compressed and stored in metal hydride tanks and when demand exceeds wind and solar generation, power is provided using a Proton Exchange Membrane Fuel Cell (PEMFC), which is highly responsive in peak demand periods compared to other types of hydrogen fuel cells. A physics-based model of the HPS is constructed in order to improve its efficiency, and statistics-based reliability models are formed to evaluate its potential for loss of load. Efficiency of a HPS can be viewed as balancing the energy production with user consumption. For this purpose, accurate models of the subsystems (wind turbines, solar panels, an electrolyzer using metal hydride tanks for hydrogen storage, fuel cell stack) are created. Realistic models of the AC loads are also required; this includes models of a performance optimized data center (POD) and the power demanded by a small community. As to optimize the energy management of the entire system, a model of a main controller that utilizes closed-loop control systems to maintain power stability is designed. On the reliability side, analysis is performed to assess the system’s response to various failures over time. This work is aimed at examining the reliability of the power system; not the examination of failure data in order to improve the reliability of various components. Models for testing of performance are created on a MATLAB Simulink and SimPowerSystems platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.