Purpose
This paper aims to present technical aspects of the assessment method and evaluation of fire damaged steel structures. The current work focuses on the behavior of structural normal steel (hot-rolled and cold-formed) and high-strength bolts after exposure to elevated temperatures. Information on stainless steel, cast iron and wrought iron is also presented.
Design/methodology/approach
Because of the complexity of the issue, an elaborate presentation of the mechanical properties influencing factors is followed. Subsequently, a wide range of experimental studies is extensively reviewed in the literature while simplified equations for determining the post-fire mechanical properties are proposed, following appropriate categorization. Moreover, the reinstatement survey is also comprehensively described.
Findings
Useful conclusions are drawn for the safe reuse of the structural elements and connection components. According to the parametric investigation of the aforementioned data, it can be safely concluded that the most common scenario of buildings after fire events, i.e. apart from excessively distorted structures, implies considerable remaining capacity of the structure, highlighting that subsequent demolition should not be the case, especially regarding critical infrastructure and buildings.
Originality/value
The stability of the structure as a whole is addressed, with aim to establish specific guidelines and code provisions for the correct appraisal and rehabilitation of fire damaged structures.
High-strength steels (HSS) are produced using special chemical composition or/and manufacturing processes. Both aspects affect their mechanical properties at elevated temperatures and after cooling down, and particularly the residual strength and the ductility of the structural members. As HSS equates the design of lighter structural elements, higher temperatures are developed internally compared to the elements designed with conventional carbon steel. Therefore, the low thickness members, along with the severe effect of high temperature on the mechanical properties of the HSS, constitute to the increased vulnerability of such structures in fire. Moreover, the re-use and reinstatement of these structures are more challenging due to the lower residual mechanical properties of HSS after the cooling down period. This paper presents a review of the available experimental studies of the mechanical properties of HSS at elevated temperatures and after cooling down. The experimental results are collected and compared with the proposed material model (reduction factors) of EN1993-1-2. Based on these comparisons, modified equations describing the effect of elevated temperatures on the mechanical properties of HSS are proposed. Also, the post-fire mechanical properties of HSS are examined. A comprehensive discussion on the effect of influencing parameters, such as manufacturing process, microstructure, loading conditions, maximum temperature, and others is further explored.
An extensive literature review of human induced vibrations that flexible footbridges experience is addressed in this study. Qualitative information is comprehensively included herein to provide common methods and code recommendations for the practicing engineers. The parameters affecting the dynamic response of footbridges excited by pedestrians are highlighted. In particular, the synchronous lateral excitation is addressed. This investigation can be valuable for the design criteria selection. In addition, this work contributes to the review of numerous case studies correlating important dynamic characteristics for various footbridge structural types, the variability of which confirms the complexity of the issue. Furthermore, vibration upgrading methods are described, focusing on applications of tuned mass dampers and remarkable conclusions are drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.