The accurate prediction of the curvature of fluid-fluid interfaces is crucial for appropriately modeling the surface forces when computing two-phase flows with immiscible fluids. The volume of fluid (VOF) method is often used for these computations to specify the different fluids and the interface by the so-called volume fraction field. In this study, a deep artificial neural network is trained to predict the interface curvature from the volume fraction values. This approach is investigated within an algebraic VOF framework. A rudimentary interface resharpening algorithm is introduced for the input stencils to enhance the accuracy and robustness when the interface can not be captured entirely sharp. The performance of different neural network architectures is evaluated by generic test data and the computation of two oscillating droplet flow configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.