Energy storage systems (ESS) may provide the required flexibility to cost-effectively integrate weather-dependent renewable generation, in particular by offering operating reserves. However, since the real-time deployment of these services is uncertain, ensuring their availability requires merchant ESS to fully reserve the associated energy capacity in their day-ahead schedule. To improve such conservative policies, we propose a data-driven probabilistic characterization of the real-time balancing stage to inform the day-ahead scheduling problem of an ESS owner. This distributional information is used to enforce a tailored probabilistic guarantee on the availability of the scheduled reserve capacity via chance constrained programming, which allows a profit-maximizing participation in energy, reserve and balancing markets. The merit order-based competition with rival resources in reserve capacity and balancing markets is captured via a bi-level model, which is reformulated as a computationally efficient mixed-integer linear problem. Results show that a merchant ESS owner may leverage the competition effect to avoid violations of its energy capacity limits, and that the proposed risk-aware method allows sourcing more reserve capacity, and thus more value, from storage, without jeopardizing the real-time reliability of the power system. Index Terms-Chance-constrained programming, Data-driven optimization, Energy storage, Energy-operating reserve markets, Balancing markets.
NOMENCLATUREA. Superscripts ch Charge mode of storage system. d Downward reserve. da Downward reserve activation. dis Discharge mode of storage system. u Upward reserve. ua Upward reserve activation. B. Sets and indices G Set of G conventional generators, index g. J Set of J demands, index j. L Set of L reserve activation levels, index l.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.