BackgroundCancer is a significant health threat in cats. Chemoresistance is prevalent in solid tumors. The ionophore salinomycin has anti-cancer properties and may work synergistically with chemotherapeutics. The purpose of our study was to determine if salinomycin could decrease cancer cell viability when combined with doxorubicin in feline sarcoma and carcinoma cells.ResultsWe established two new feline injection-site sarcoma cell lines, B4 and C10, and confirmed their tumorigenic potential in athymic nude mice. B4 was more resistant to doxorubicin than C10. Dose-dependent effects were not observed until 92 μM in B4 cells (p = 0.0006) vs. 9.2 μM (p = 0.0004) in C10 cells. Dose-dependent effects of salinomycin were observed at 15 μM in B4 cells (p = 0.025) and at 10 μM in C10 cells (p = 0.020). Doxorubicin plus 5 μM salinomycin decreased viability of B4 cells compared to either agent alone, but only at supra-pharmacological doxorubicin concentrations. However, doxorubicin plus 5 μM salinomycin decreased viability of C10 cells compared to either agent alone at doxorubicin concentrations that can be achieved in vivo (1.84 and 4.6 μM, p < 0.004). In SCCF1 cells, dose-dependent effects of doxorubicin and salinomycin were observed at 9.2 (p = 0.036) and 2.5 (p = 0.0049) μM, respectively. When doxorubicin was combined with either 1, 2.5, or 5 μM of salinomycin in SCCF1 cells, dose-dependent effects of doxorubicin were observed at 9.2 (p = 0.0021), 4.6 (p = 0.0042), and 1.84 (p = 0.0021) μM, respectively. Combination index calculations for doxorubicin plus 2.5 and 5 μM salinomycin in SCCF1 cells were 0.4 and 0.6, respectively.ConclusionsWe have developed two new feline sarcoma cell lines that can be used to study chemoresistance. We observed that salinomycin may potentiate (C10 cells) or work synergistically (SCCF1 cells) with doxorubicin in certain feline cancer cells. Further research is indicated to understand the mechanism of action of salinomycin in feline cancer cells as well as potential tolerability and toxicity in normal feline tissues.Electronic supplementary materialThe online version of this article (10.1186/s12917-019-1780-5) contains supplementary material, which is available to authorized users.
BackgroundThe response of soft tissue sarcomas to cytotoxic chemotherapy is inconsistent. Biomarkers of chemoresistance or chemosensitivity are needed in order to identify appropriate patients for treatment. Given that many chemotherapeutics kill cells through direct DNA interactions, we hypothesized that upregulation of DNA damage response mechanisms would confer resistance to cytotoxic chemotherapy in sarcomas. To study this, we used spontaneously-occurring feline injection-site sarcomas (FISS).MethodsγH2AX and p53 expression were determined in biopsy samples of FISS. γH2AX expression was determined via immunohistochemistry whereas p53 expression was determined via qRT-PCR. Cell lines derived from these sarcoma biopsies were then treated with carboplatin (N = 11) or doxorubicin (N = 5) and allowed to grow as colonies. Colony forming-ability of cells exposed to chemotherapy was compared to matched, untreated cells and expressed as percent survival relative to controls. ImageJ was used for quantification. A mixed model analysis was performed to determine if an association existed between relative survival of the treated cells and γH2AX or p53 expression in the original tumors. Cell lines were validated via vimentin expression or growth as subcutaneous sarcomas in nude mice.ResultsAn association was detected between γH2AX expression and relative survival in cells exposed to carboplatin (P = 0.0250). In the 11 FISS tumors evaluated, γH2AX expression ranged from 2.2 to 18.8% (mean, 13.3%). Cells from tumors with γH2AX expression higher than the sample population mean had fourfold greater relative survival after carboplatin exposure than cells from tumors with γH2AX expression less than the mean. There was no association between relative survival after carboplatin exposure and p53 expression (P = 0.1608), and there was no association between relative survival after doxorubicin exposure and either γH2AX (P = 0.6124) or p53 (P = 0.8645) expression. Four cell lines were validated via growth as sarcomas in nude mice. Vimentin expression was confirmed in the other 7 cell lines.ConclusionsγH2AX expression, but not wild type p53, may potentially serve as a biomarker of resistance to platinum therapeutics in soft tissue sarcomas. To further investigate this finding, prospective, in vivo studies are indicated in animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.